%! TEX root = Galois.tex % vim: tw=50 % 31/10/2023 12PM \begin{remark} % Remark 6.3 \label{lec12_first_remark} We saw in the proof of (i) $\implies$ (ii) that if $L \extendover K$ is \gls{galois}, $G = \Gal(L \extendover K)$, and $\alpha \in L$ then the \gls{min_poly} of $\alpha$ over $K$ is \[ \prod_{i = 1}^m (X - \alpha_i) \] where $\alpha_1, \ldots, \alpha_m$ are the distinct elements of $\operatorname{ord}_G(\alpha) = \{\sigma(\alpha) : \sigma \in G\}$. \end{remark} \begin{flashcard}[ft-of-galois-theory] \begin{theorem}[Fundamental Theorem of Galois Theory] % Theorem 6.4 \label{ft_of_gal} \cloze{Let $L \extendover K$ be a \gls{finite_ex} \gls{galois} \gls{ex}, $G = \Gal(L \extendover K)$.} \begin{enumerate}[(a)] \item \cloze{Let $F$ be an intermediate \gls{field}, i.e. $K \subset F \subset L$. Then $L \extendover F$ is \gls{galois} and $\Gal(L \extendover F)$ is a subgroup of $G$.} \item \cloze{There is an inclusion reversing bijection \begin{align*} \{\text{intermediate \glspl{field} $K \subset F \subset L$}\} &\to \{\text{subgroups $H \subset G$}\} \\ F &\mapsto \Gal(L \extendover F) \\ \fixedf L^H &\mapsfrom H \end{align*} } \item \cloze{Let $F$ be an intermediate \gls{field}, i.e. $K \subset F \subset L$. Then \begin{align*} \text{$F \extendover K$ \gls{galois}} &\iff \sigma F = F ~\forall \sigma \in G \\ &\iff \text{$H = \Gal(L \extendover F)$ is a normal subgroup of $G$} \end{align*} In this case the restriction map \begin{align*} G &\to \Gal(F \extendover K) \\ \sigma &\mapsto \sigma|_F \end{align*} is surjective with kernel $H$, and so \[ \Gal(F \extendover K) \cong G / H \] (a quotient of $G$). } \end{enumerate} \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[(a)] \item \cloze{By \cref{classification_of_finite_galois_extensions}, $L$ is the \gls{splitting_field} over $K$ of some \gls{sep_poly} polynomial $f \in \radj K[X]$. Then $L$ is the \gls{splitting_field} of $f$ over $F$. So $L \extendover F$ is \gls{galois}. $\Gal(L \extendover F)$ is a subgroup of $\Gal(L \extendover K)$ since any \gls{automorph} of $L$ acting as the identity on $F$ also acts as the identity on $K$.} \item \cloze{To show we have a bijection, we need to check both compositions are the identity. \begin{enumerate}[(i)] \item $F = \fixedf L^{\Gal(L \extendover F)}$: This holds since $L \extendover F$ is \gls{galois}. \item $\Gal(L \extendover \fixedf L^H) = H$: we certainly have $H \subset \Gal(L \extendover \fixedf L^H)$ so it suffices to show $\#\Gal(L \extendover \fixedf L^H) \le \#H$. Let $F = \fixedf L^H$. As $L \extendover F$ is \gls{finite_ex} and \gls{sep_ex}, the \nameref{prim_el_thm} tells us that $L = \fadj F(\alpha)$ for some $\alpha \in L$. Then $\alpha$ is a root of \[ f(X) = \prod_{\sigma \in H} (X - \sigma(\alpha)) \] which has coefficients in $\fixedf L^H = F$. Therefore $\#\Gal(L \extendover \fixedf L^H) = \exdeg[L : \fixedf L^H] = \exdeg[\fadj F(\alpha) : F] \le \deg f = \#H$. \end{enumerate} If $F_1 \subset F_2$ then $\Gal(L \extendover F_2) \subset \Gal(L \extendover F_1)$, so the bijection reverses inclusions.} \item \cloze{We first show \[ \text{$F \extendover K$ \gls{galois}} \iff \sigma F = F ~\forall \sigma \in G .\] \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] Let $\alpha \in F$ have \gls{min_poly} $f$ over $K$. For any $\sigma \in G$, $\sigma(\alpha)$ is a root of $f$. Since $F \extendover K$ is \gls{norm_ex} we have $\sigma(\alpha) \in F$, so $\sigma F \subset F$. As $\exdeg[\sigma F : K] = \exdeg[F : K]$, it follows that $\sigma F = F$. \item[$\Leftarrow$] Let $\alpha \in F$. By \cref{lec12_first_remark}, its \gls{min_poly} over $K$ is \[ f(X) = \prod_{i = 1}^m (X - \alpha_i) \] where $\alpha_1, \ldots, \alpha_m$ are the distinct elements of $\{\sigma(\alpha) : \sigma \in G\}$. The assumption $\sigma(F) = F ~\forall \sigma \in G$ tells us that $\alpha_1, \ldots, \alpha_m \in F$. This shows $F \extendover K$ is \gls{norm_ex}. But also, $L \extendover K$ \gls{galois}, so so $L \extendover K$ is \gls{sep_ex}, so $F \extendover K$ is \gls{sep_ex}. Hence $F \extendover K$ is \gls{norm_ex} and \gls{sep_ex}, so by \cref{classification_of_finite_galois_extensions}, $F \extendover K$ is \gls{galois}. \end{enumerate} Suppose $H \subset G$ corresponds to $F = \fixedf L^H$. For $\sigma \in G$, \begin{align*} \fixedf L^{\sigma H\sigma^{-1}} &= \{x \in L \st \sigma \tau \sigma^{-1}(x) = x ~\forall \tau \in H\} \\ &= \{x \in L \st \tau \sigma^{-1}(x) = \sigma^{-1}(x) ~\forall \tau \in H\} \\ &= \{x \in L \st \sigma^{-1}(x) \in \fixedf L^H = F\} \\ &= \sigma F \end{align*} So \begin{align*} \sigma F = F ~\forall \sigma \in G &\iff \fixedf L^{\sigma H\sigma^{-1}} = \fixedf L^H ~\forall \sigma \in G \\ &\iff \sigma H \sigma^{-1} = H ~\forall \sigma \in G \\ &\iff \text{$H \subset G$ is a normal subgroup} \end{align*} Consider the restriction map \begin{align*} G = \Gal(L \extendover K) &\mapsto \Gal(F \extendover K) \\ \sigma &\mapsto \sigma|_F \end{align*} Then \[ \Ker(\operatorname{res}) = \{\sigma \in \Gal(L \extendover K) \st \sigma(x) = x ~\forall x \in F\} = \Gal(L \extendover F) = H \] Therefore $G / H \cong \Im(\operatorname{res}) \le \Gal(F \extendover K)$. But, \[ \#(G / H) = \frac{\#G}{\#H} = \frac{\exdeg [L : K]}{\exdeg [L : F]} = \exdeg [F : K] = \#\Gal(F \extendover K) .\] Therefore $\operatorname{res}$ is surjcetive and $\Gal(F \extendover K) \cong G / H$. } \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{example} Let $K = \fadj \QQ(\sqrt{2}, \sqrt{3})$. $K \extendover \QQ$ is the \gls{splitting_field} of the polynomial $(X^2 - 2)(X^2 - 3)$. Therefore $K \extendover \QQ$ is \gls{norm_ex}. \glsref[sep_ex]{Separability} is automatic in $\characteristic = 0$, hence $K \extendover \QQ$ is \gls{galois}. If $\sigma \in \Gal(K \extendover \QQ)$, then it is uniquely determined by $\sigma(\sqrt{2})$ and $\sigma(\sqrt{3})$. Since $\sigma(\sqrt{2}) = \pm \sqrt{2}$ and $\sigma(\sqrt{3}) = \pm \sqrt{3}$, we have \[ \#\Gal(K \extendover \QQ) \le 4 .\] We saw in \cref{lec3_last_example} that $\exdeg [K : \QQ] = 4$. Hence $\#\Gal(K \extendover \QQ) = 4$. Let \[ \sigma : \sqrt{2} \mapsto \sqrt{2}; \sqrt{3} \mapsto -\sqrt{3} \] \[ \tau : \sqrt{2} \mapsto -\sqrt{2}; \sqrt{3} \mapsto \sqrt{3} \] Then $\sigma^2 = \tau^2 = \id$ and $\sigma \tau = \tau \sigma$, so $\Gal(K \extendover \QQ) \cong C_2 \times C_2$. \begin{center} \includegraphics[width=0.6\linewidth]{images/753fa742a0a149f6.png} \end{center} \end{example}