%! TEX root = Galois.tex % vim: tw=50 % 28/10/2023 12PM \newpage \section{Galois Extensions} \begin{flashcard}[automorphism-defn] \begin{definition*}[automorphism] \glsnoundefn{automorph}{automorphism}{automorphisms} \glssymboldefn{automorph}{Aut}{Aut} \cloze{ An \emph{automorphism} of a \gls{field} $L$ is a bijective homomorphism $\sigma : L \to L$. We write $\Aut(L)$ for the group of automorphisms of $L$ under composition, i.e. \[ (\sigma \tau)(x) = \sigma(\tau(x)) .\] } \end{definition*} \end{flashcard} \textbf{Exercise:} Check inverses (i.e. check that $\sigma^{-1}$ is a homormorphism). \begin{flashcard}[Kautomorph-notation] \begin{definition*} \glsnoundefn{Kautomorph}{$K$-automorphism}{$K$-automorphisms} \glssymboldefn{Kautomorph}{$Aut(L / K)$}{$Aut(L / K)$} Let $L \extendover K$ be a \gls{field_ex}. A $K$-automorphism of $L$ is an \gls{automorph} $\sigma \in \Aut(L)$ whose restriction to $K$ is the identity map. The $K$-automorphisms of $L$ form a subgroup $\cloze{\KAut(L \extendover K)} \subset \Aut(L)$. \end{definition*} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(i)] \item $\Aut(\QQ)$ and $\Aut(\FF_p)$ are both trivial. Therefore $\Aut(L) = \KAut(L \extendover K)$ where $K$ is the \gls{prime_subfield} of $L$. \item If $\exdeg[L : K] < \infty$ then any \Kembedding{K} $L \to L$ is surjective (by rank-nullity), i.e. \[ \Hom_k(L, L) = \KAut(L \extendover K) \] \end{enumerate} \end{remark*} \begin{flashcard}[finite-automorphisms-bound] \begin{lemma} % Lemma 6.1 \label{finite_automorph_bound} Let $L \extendover K$ be a \gls{finite_ex} \gls{ex}. Then \[ \#\Aut(L \extendover K) \le \cloze{\exdeg[L : K]} \] \end{lemma} \begin{proof} Take $M = L$ in \cref{hom_bound_general_thm}. \end{proof} \end{flashcard} \begin{flashcard}[aut-fixed-points-defn] \begin{definition*} \glsnoundefn{fixed_field}{fixed field}{fixed fields} \glssymboldefn{fixed_field}{$L^S$}{$L^S$} If $S \subset \Aut(L)$ is any subset we define the \emph{fixed field} of $S$ to be \[ \cloze{L^S = \{x \in L \st \sigma(x) = x ~\forall \sigma \in S\}} \] This is a subfield of $L$. \end{definition*} \end{flashcard} \begin{flashcard}[galois-extension-defn] \begin{definition*} \glsadjdefn{galois}{Galois}{\gls{ex}} A \gls{field_ex} $L \extendover K$ is \emph{Galois} if \cloze{it is \gls{alg_ex} and \[ K = \fixedf L^{\KAut(L \extendover K)} \]} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(i)] \item $\KAut(\CC \extendover \RR) = \{1, \tau\}$ where $\tau$ is complex conjugation. If $z \in \CC$, then \[ z \in \RR \iff \tau(z) = z \] therefore $\CC \extendover \RR$ is \gls{galois}. \item Let $L = \fadj \QQ(\sqrt{2})$. $f(X) = X^2 - 2$. \[ \KAut(L \extendover \QQ) \leftrightarrow \{\text{roots of $f$ in $L$}\} \] Therefore $\KAut(L \extendover \QQ) = \{1, \tau\}$ where $\tau : \fadj \QQ(\sqrt{2}) \to \fadj \QQ(\sqrt{2})$, $a + b\sqrt{2} \mapsto a - b\sqrt{2}$, $a, b \in \QQ$. \begin{align*} \fixedf L^\tau &= \{a + b\sqrt{2} \st a + b\sqrt{2} = a - b\sqrt{2}\} \\\ &= \{a + b\sqrt{2} \st b = 0\} \\ &= \QQ \end{align*} Therefore $L \extendover \QQ$ is \gls{galois}. \item Let $L = \fadj \QQ(\sqrt[3]{2})$, $f(X) = X^3 - 2$. Then \[ \KAut(L \extendover \QQ) \leftrightarrow \{\text{roots of $f$ in $L$}\} \] Since $L \subset \RR$ we see that $\#\KAut(L \extendover \QQ) = 1$. Therefore $L \extendover \QQ$ is not \gls{galois}. \item Let $K \extendover \FF_p$ be a \gls{finite_ex} \gls{ex} ($\implies |K| < \infty$). Let $\phi : K \to K$, $x \mapsto x^p$. By \cref{frob_hom_prop}, $\phi \in \KAut(K \extendover \FF_p)$. Then \begin{align*} \fixedf K^\phi &= \{x \in K \st \phi(x) = x\} \\ &= \{\text{roots of $X^p - X$ in $K$}\} \\ &\supset \FF_p \end{align*} (with equality in the $\supset$ by \cref{roots_bound_lemma}). Therefore $K \extendover \FF_p$ is \gls{galois}. \end{enumerate} \end{example*} \begin{flashcard}[classification-of-finite-galois-extensions-thm] \begin{theorem}[Classification of finite Galois extensions] % Theorem 6.2 \label{classification_of_finite_galois_extensions} Let $\exdeg[L : K] < \infty$ and $G = \KAut(L \extendover K)$. Then the following are equivalent: \begin{enumerate}[(i)] \item \cloze{$L \extendover K$ is \gls{galois}, i.e. $K = \fixedf L^G$.} \item \cloze{$L \extendover K$ is \gls{norm_ex} and \gls{sep_ex}.} \item \cloze{$L$ is the \gls{splitting_field} of a \gls{sep_poly} over $K$.} \item \cloze{$\#G = \exdeg[L : K]$ (i.e. equality holds in \cref{finite_automorph_bound}).} \end{enumerate} \end{theorem} \begin{proof} \begin{enumerate}[(i) $\implies$ (ii)] \item[(i) $\implies$ (ii)] \cloze{Let $\alpha \in L$ and $\{\sigma(\alpha) : \sigma \in G\} = \{\alpha_1, \ldots, \alpha_m\}$ with $\alpha_1, \ldots, \alpha_m$ distinct. Let $f(X) = \prod_{i = 1}^m (X - \alpha_i)$. We let $\sigma \in G$ act on $\radj L[X]$ via \[ \sigma \left( \sum c_i X^i \right) = \sum \sigma(c_i) X^i \] Since $G$ permutes the $\alpha_i$ we have $\sigma f = f ~\forall \sigma \in G$. $L \extendover K$ \gls{galois} implies $f \in \radj K[X]$. Let $g$ be the \gls{min_poly} of $\alpha$ over $K$. Since $f(\alpha) = 0$ we have $g \mid f$. Since $g(\sigma(\alpha)) = \sigma(g(\alpha)) = 0 ~\forall \sigma \in G$, every root of $f$ is a root of $g$. By construction $f$ is \gls{sep_poly} and monic, so $f = g$. Therefore the \gls{min_poly} of $\alpha$ over $K$ splits into distinct linear factors over $L$. Since $\alpha \in L$ is arbitrary, this shows that $L \extendover K$ is \gls{norm_ex} and \gls{sep_ex}.} \item[(ii) $\implies$ (iii)] \cloze{By \cref{hom_bound_general_thm}, $L$ is the \gls{splitting_field} of some $f \in \radj K[X]$. Write $f = \prod_{i = 1}^m f_i^{e_i}$ where ther $f_i \in \radj K[X]$ are distinct and irreducible, and $e_i \ge 1$. Since $L \extendover K$ is \gls{sep_ex}, each $f_i$ is \gls{sep_poly}. Moreover, $\gcd(f_i, f_J) = 1$ in $\radj K[X]$ so by \cref{gcd_same_in_extension_lemma}, $\gcd(f_i, f_j) = 1$ in $\radj L[X]$. Therefore $g = \prod_{i = 1}^m f_i$ is \gls{sep_poly}, and $L$ is a \gls{splitting_field} for $g$ over $K$.} \item[(iii) $\implies$ (iv)] \cloze{Let $L$ be the \gls{splitting_field} of a \gls{sep_poly} $f \in \radj K[X]$. Then $L = \fadj K(\alpha_1, \ldots, \alpha_n)$ where $\alpha_1, \ldots, \alpha_n$ are the roots of $f$. The \gls{min_poly} $f_i$ of each $\alpha_i$ divides $f$ and so splits into distinct linear factors over $L$. Taking $M = L$ in \cref{hom_bound_general_thm} gives $\#\KAut(L \extendover K) = \exdeg[L : K]$.} \item[(iv) $\implies$ (i)] \cloze{$G \subset \KAut(L \extendover \fixedf L^G) \subset \KAut(L \extendover K) = G$. Therefore $G = \KAut(L \extendover \fixedf L^G)$. \[ \implies \exdeg[L : K] \stackrel{\text{by (iv)}}{=} \#G = \#\KAut(L \extendover \fixedf L^G) \stackrel{\text{\cref{finite_automorph_bound}}}{\le} \exdeg[L : \fixedf L^G] \] So by \nameref{tower_law}, \[ \cancel{\exdeg[L : \fixedf L^G]} \exdeg[\fixedf L^G : K] \le \cancel{\exdeg[L : L^G]} \] so $\fixedf L^G = K$. } \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[galois-group-defn] \begin{definition*}[Galois group] \glsnoundefn{galois_group}{Galois group}{Galois groups} \glssymboldefn{galois_group}{Gal}{Gal} \cloze{ If $L \extendover K$ is a \gls{galois} \gls{ex} then we write $\Gal(L \extendover K)$ for $\KAut(L \extendover K)$ (we call this the \emph{Galois group of $L$ over $K$}). } \end{definition*} \end{flashcard}