%! TEX root = Galois.tex % vim: tw=50 % 26/10/2023 12PM \begin{remark*} \cref{irred_implies_sep} and \cref{prim_el_thm} show that if $\exdeg[K : \QQ] < \infty$ then $K = \QQ(\alpha)$ for some $\alpha \in K$. \end{remark*} \vspace{-1em} \textbf{One aim for today:} Show that if $L \extendover K$ is a \gls{field_ex} and $\alpha_1, \ldots, \alpha_n \in L$, then \[ \text{$\alpha_1, \ldots, \alpha_n$ are \gls{sep_el} over $K$} \implies \text{$\fadj K(\alpha_1, \ldots, \alpha_n) \extendover K$ is \gls{sep_ex}} \] \begin{flashcard}[HomK-notation] \begin{notation*} \glssymboldefn{homk}{HomK}{HomK} Let $L \extendover K$ and $M \extendover K$ be \glspl{field_ex}. We write \[ \fHom_k(L, M) = \cloze{\{\text{\Kembeddingpl{K} $L \hookrightarrow M$}\}} \] \end{notation*} \end{flashcard} \begin{flashcard}[HomK-bound-lemma] \begin{lemma} % Lemma 5.7 \label{homk_bound_lemma} Let $\exdeg[L : K] < \infty$. Suppose $L = \fadj K(\alpha)$ and $f$ is the \gls{min_poly} of $\alpha$ over $K$. Let $M \extendover K$ be any \gls{field_ex}. Then \[ \#\fHom_K(L, M) \le \cloze{\exdeg[L : K]} ,\] with equality if and only if \cloze{$f$ splits into linear factors over $M$.} \end{lemma} \begin{proof} \cloze{ By \cref{automorphisms_bound}, \begin{align*} \#\fHom_K(L, M) &= \#\{\text{roots of $f$ in $M$}\} \\ &\le \deg f = \exdeg[L : K] \end{align*} with equality if and only if $f$ splits into discinct linear factors over $M$. } \end{proof} \end{flashcard} \begin{theorem} % Theorem 5.8 \label{hom_bound_general_thm} Let $\exdeg[L : K] < \infty$. Write $L = \fadj K(\alpha_1, \ldots, \alpha_n)$ and let $f_i$ be the \gls{min_poly} of $\alpha_i$ over $K$. Let $M \extendover K$ be any \gls{field_ex}. Then \[ \#\fHom_K(L, M) \le \exdeg[L : K] \] with equality if and only if each $f_i$ splits into distinct linear factors over $M$. \end{theorem} \vspace{-1em} Note that \cref{homk_bound_lemma} is the case $n = 1$. \textbf{Obvious variant of \cref{hom_bound_general_thm}:} Let $\sigma : K \hookrightarrow M$ be an embedding. Then \[ \#\{\text{\glspl{sigma_hom} $L \to M$}\} \le \exdeg[L : K] \] with equality if and only if each $\sigma(f_i)$ splits into distinct linear factors over $M$. We'll use this variant in the induction argument. \begin{proof}[Proof of \cref{hom_bound_general_thm}] By induction on $n$. The case $n = 1$ is proved in \cref{homk_bound_lemma}. So suppose $n > 1$. Let $K_1 = \fadj K(\alpha_1)$. Then \cref{homk_bound_lemma} implies \[ \label{lec10_l88_eq} \#\fHom_K(K, M) \le \exdeg[K_1 : K] \tag{1} \] \begin{center} \includegraphics[width=0.6\linewidth]{images/7257fcb751b04ff5.png} \end{center} Let $\sigma \in \fHom_K(K_1, M)$. By the induction hypothesis, \[ \label{lec10_l94_eq} \#\{\text{\glspl{sigma_hom} $L = \fadj K_1(\alpha_2, \ldots, \alpha_n) \to M$}\} \le \exdeg[L : K_1] \tag{2} \] Then \nameref{tower_law} with \eqref{lec10_l88_eq} and \eqref{lec10_l94_eq} gives \[ \#\fHom_K(L, M) \le \exdeg[L : K_1] \exdeg[K_1 : K] = \exdeg[L : K] \] If equality holds then equality holds in both \eqref{lec10_l88_eq} and \eqref{lec10_l94_eq}. Equality in \eqref{lec10_l88_eq} implies $f_1$ splits into distinct linear factors over $M$. Reordering the $\alpha_i$ gives the same conclusion for all the $f_i$. Conversely, if each $f_i$ splits into distinct linear factors over $M$ then \cref{homk_bound_lemma} gives equality in \eqref{lec10_l88_eq}. For $2 \le i \le n$, the \gls{min_poly} of $\alpha_i$ over $K_1$ divides $f_i$ and so splits into distinct linear factors over $M$. Then the induction hypothesis implies that equality holds in \eqref{lec10_l94_eq}. Since we now have equality in both \eqref{lec10_l88_eq} and \eqref{lec10_l94_eq}, it follows that $\#\fHom_K(L, M) = \exdeg[L : K]$. \end{proof} \begin{corollary} % Cororollary 5.9 \label{finite_sep_ex_tfae} Let $\exdeg [L : K] < \infty$. Write $L = \fadj K(\alpha_1, \ldots, \alpha_n)$ and let $f_i$ be the \gls{min_poly} of $\alpha_i$ over $K$. Let $M \extendover K$ be any \gls{field_ex} in which $\prod f_i$ splits as a product of linear factors (for example $M = \algclos{K}$). Then the following are equivalent: \begin{enumerate}[(i)] \item $L \extendover K$ is \gls{sep_ex}. \item Each $\alpha_i$ is \gls{sep_el} over $K$. \item Each $f_i$ splits into distinct linear factors over $M$. \item $\#\fHom_K(L, M) = \exdeg[L : K]$. \end{enumerate} \end{corollary} \begin{proof} \phantom{} (i) $\implies$ (ii) $\implies$ (iii) by definition. (iii) $\implies$ (iv) see \cref{hom_bound_general_thm}. (iv) $\implies$ (i) Let $\beta \in L$. Applying \cref{homk_bound_lemma} to $L = \fadj K(\alpha_1, \ldots, \alpha_n, \beta)$ shows that $\beta$ is separable over $K$. \end{proof} \begin{remark*} (ii) $\implies$ (i) is the result promised at the start of the lecture. (i) $\iff$ (iv) is a useful characterisation of \gls{sep_ex} \glspl{ex}. \end{remark*} \begin{example} % Example 5.10 Let $K$ be any \gls{field}. The polynomial $T^n - Y \in \radj K[Y, T]$ is irreducible (it suffices to consider factorisations of the form $f(T)(g(T) + Yh(T))$ where $f, g, h \in \radj K[T]$). Since $\radj K[Y]$ is a UFD with field of fractions $\fadj K(Y)$, it follows by Gauss's Lemma that \[ \label{lec10_l173_eq} T^n - Y \in \radj \fadj K(Y)[T] \tag{$*$} \] is irreducible. The \gls{field_ex} $\fadj K(X) / \fadj K(X^n)$ is generated by $X$ which is a root of $T^n - X^n \in \radj \fadj K(X^n)[T]$. Putting $Y = X^n$ in \eqref{lec10_l173_eq} shows this is irreducible. Therefore $\exdeg[\fadj K(X) : \fadj K(X^n)] = n$. Now take $K = \FF_p$ and $n = p$ ($p$ a prime). We claim that $\fadj \FF_p(X) / \fadj \FF_p(X^p)$ is an \glsref[sep_ex]{inseparable} \gls{ex} of \gls{ex_deg} $p$. Indeed, the \gls{min_poly} of $X$ over $\fadj \FF_p(X^p)$ is $f(T) = T^p - X^p \in \radj \fadj \FF_p(X^p)[T]$, which is \glsref[sep_poly]{inseparable} since $f(T) = (T - X)^p$ (compare to \cref{frob_hom_prop}). \end{example}