%! TEX root = Galois.tex % vim: tw=50 % 05/10/2023 12PM \setcounter{section}{-1} \section{Introduction} \emph{Galois Theory} is named after the French mathematician Evariste Galois (1811-1832). It is the study of roots of polynomials (or more generally field extensions). It can be used to show that certain classical problems cannot be solved -- for example there is no formula (in terms of radicals) for the roots of a general polynomial of degree $n$ when $n \ge 5$. (Radicals means $+$, $-$, $\times$, $\div$, $\sqrt[m]{}$). This is related to the fact that the alternating group $A_n$ is simple for $n \ge 5$. More positively, Galois theory is foundational to the study of Algebraic Number Theory and Algebraic Geometry. Prerequisites: Linear Algebra and GRM \newpage \section{Field Extensions} \begin{flashcard}[field-defn] \begin{definition*}[Field] \glsdefn{field}{field}{fields} \cloze{ A \emph{field} $K$ is a ring (commutative with a $1$, with $0_K \neq 1_K$) in which every non-zero element has an inverse under $\times$. } \end{definition*} \end{flashcard} \begin{flashcard}[characteristic-defn] \begin{definition*}[Characteristic] \glsdefn{char}{characteristic}{N/A} \cloze{ The \emph{characteristic} of a \gls{field} $K$ is the least positive integer $p$ (necessarily prime) such that $p \cdot 1_K = 0_K$, or $0$ \fcemph{if no such integer exists}. } \end{definition*} \end{flashcard} \vspace{-1em} \noindent \glsnoundefn{prime_subfield}{prime subfield}{prime subfields} Then $K$ contains a smallest subfield (called its prime subfield) which is isomorphic to $\FF_p = \ZZ / p\ZZ$ if $K$ has \gls{char} $p$, and to $\QQ$ if it has \gls{char} $0$. \begin{flashcard}[polynomial-has-at-most-deg-roots-lemma] \begin{lemma} % Lemma 1.1 \label{roots_bound_lemma} Let $K$ be a \gls{field} and $0 \neq f \in K[X]$. Then $f$ has $\le \deg f$ roots in $K$. \end{lemma} \begin{proof} \cloze{ By induction on $n = \deg f$. If $f$ has no roots then there is nothing to prove. Otherwise let $a \in K$ be a root of $f$. Then $f(X) = (X - a) g(X)$ with $g \in K[X]$, where $\deg g = n - 1$. If $b \in K$ is a root of $f$, then either $b = a$ or $g(b) = 0$. Therefore \begin{align*} |\{\text{roots of $f$ in $K$}\}| &\le 1 + |\{\text{roots of $g$ in K}\}| \\ &\le 1 + (n - 1) &&\text{(by induction)} \\ &= n &&\qedhere \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[field-extension-defn] \begin{definition*}[Field extension] \glsdefn{field_ex}{field extension}{field extensions} \glsalias{ex}{extension}{extensions} \cloze{ Let $L$ be a \gls{field} and $K \subset L$ a subfield (i.e. a subset which is a \gls{field} under the same operations $+$ and $\times$). \glssymboldefn{field_ex}{field extension}{$/$} We say $L$ is an \emph{extension} of $K$, written $L / K$. } \end{definition*} \end{flashcard} \vspace{-1em} \noindent We note that $L$ and $K$ necessarily have the same \gls{char}. \begin{example*} \phantom{} \begin{enumerate}[(i)] \item $\CC / \RR$, $\QQ(\sqrt{2}) / \QQ$, $\RR / \QQ$. \item Adjoining a root of an irreducible polynomial: Let $K$ be a \gls{field} and $f \in K[X]$ an irreducible polynomial. We recall from GRM that $K[X]$ is Euclidean, hence a PID. Therefore $(f) \subset K[X]$ is a maximal ideal and hence $L = \frac{K[X]}{(f)}$ is a \gls{field_ex} of $K$ and $\alpha = X + (f) \in L$ is a root of $f$. For example taking $K = \RR$, $f = X^2 + 1$ gives the first example in (i). \end{enumerate} \end{example*} \vspace{-1em} Let $L \extendover K$ be a \gls{field_ex}. Then $+$ in $L$ and multiplication by elements in $K$ make $L$ a vector space over $K$ (for example $\CC$ is an $\RR$ vector space). \begin{flashcard}[extension-degree-defn] \begin{definition*}[Degree of an Extension] \glsdefn{ex_deg}{degree}{N/A} \glssymboldefn{ex_deg}{degree of extension}{$[L : K]$} \glsdefn{finite_ex}{finite}{N/A} \cloze{ Let $L \extendover K$ be a \gls{field_ex}. We say $L \extendover K$ is \emph{finite} if $L$ is finite dimensional as a $K$-vector space, in which case we write $[L : K] = \dim_K L$ for its dimension, which we call the \emph{degree} of $L \mid K$. \glsdefn{infinite_ex}{infinite}{N/A} If not, we say $L \extendover K$ is an \emph{infinite extension} and write $[L : K] = \infty$. } \end{definition*} \end{flashcard} \vspace{-1em} $L \extendover K$ is a quadratic (cubic, quartic, \ldots) \gls{ex} if $[L : K] = 2 (3, 4, \ldots)$. \begin{example*}[Continued] \phantom{} \begin{enumerate}[(i)] \item $\degover{\CC}{\RR} = 2$ (basis $1$, $i$), $\degover{\QQ(\sqrt{2})}{\QQ} = 2$ (basis $1$, $\sqrt{2}$) $\degover{\RR}{\QQ} = \infty$ (exercise: use countability). \item If $L = \frac{K[X]}{(f)}$ where $f \in K[X]$ irreducible then $\degover{L}{K} = \deg f$. Indeed if $\alpha = X + (f) \in L$ and $n = \deg f$ then $1, \alpha, \ldots, \alpha^{n - 1}$ is a $K$-basis for $L$. \end{enumerate} \end{example*} \begin{remark*} \glsdefn{embedding}{embedding}{embeddings} \glsalias{field_embedding}{field embedding}{field embeddings} Let $K$, $L$ be \glspl{field} and $\phi : K \to L$ a ring homomorphism. Then $\ker(\phi)$ is an ideal in $K$, but $K$ is a \gls{field}, so $\ker(\phi) = \{0\}$ or $\ker(\phi) = K$. But by definition, a ring homomorphism must have $\phi(1_K) = 1_L$, so can't have $\ker(\phi) = K$. So must have $\ker(\phi) = \{0\}$, i.e. $\phi$ is injective. We call $\phi$ an \emph{embedding} of $K$ in $L$. We may use $\phi$ to identify $K$ as a subfield of $L$, i.e. we get a \gls{field_ex} $L \extendover K$. \end{remark*} \begin{example*} Taking $K = \FF_2$, $f = X^ + X + 1 \in \FF_2[X]$ (which is irreducible) gives $L = \frac{\FF_2[X]}{(X^2 + X + 1)}$ a \gls{field} with $4$ elements. \end{example*} \begin{flashcard}[finite-field-sizes-proposition] \begin{proposition}[Possible sizes of finite \glspl{field}] % Proposition 1.2 \label{finite_field_sizes_prop} \cloze{ Let $K$ be a finite \gls{field} of \gls{char} $p$ (necessarily $> 0$). Then $|K| = p^n$ where $n = \degover{K}{\FF_p}$. } \end{proposition} \begin{proof} \cloze{ $\degover{K}{\FF_p} = n \implies K \equiv \FF_p^n$ as an $\FF_p$-vector space. } \end{proof} \end{flashcard} Later we will show that (up to isomorphism) there is exactly one \gls{field} of order $p^n$ for each prime power $p^n$. \glsdefn{mult_group}{multiplicative group}{N/A} \glssymboldefn{mult_group}{multiplicative group}{$K^*$} The multiplicative group of a \gls{field} $K$ is the set $K^* = K \setminus \{0\}$, which is an abelian group under $\times$. \begin{flashcard}[cyclic-multiplicative-group-proposition] \begin{proposition} % Proposition 1.3 \label{cyclic_mult_subgroup} If $K$ is a \gls{field} then any finite subgroup $G \subset \mult{K}$ is cyclic. In particular if $K$ is a finite \gls{field} then $\mult{K}$ is cyclic. \end{proposition} \begin{proof} \cloze{ The structure theorem for finite abelian groups gives \[ G \equiv C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t} \] where $1 < d_1 \mid d_1 \mid \cdots \mid d_t$. If $G$ is not cyclic then picking a prime dividing $d_1$ shows that $G$ contains a subgroup isomorphic to $C_p \times C_p$. Hence the polynomial $X^p - 1$ has $\ge p^2$ roots in $K$, which contradicts \cref{roots_bound_lemma}. } \end{proof} \end{flashcard}