Galois Theory

May 30, 2024

Contents

Lectures

[Lecture 1](#page-2-1) [Lecture 2](#page-5-0) [Lecture 3](#page-8-0) [Lecture 4](#page-11-0) [Lecture 5](#page-14-0) [Lecture 6](#page-17-0) [Lecture 7](#page-20-0) [Lecture 8](#page-24-0) [Lecture 9](#page-27-2) [Lecture 10](#page-30-0) [Lecture 11](#page-33-0) [Lecture 12](#page-37-0) [Lecture 13](#page-40-0) [Lecture 14](#page-43-0) [Lecture 15](#page-48-0) [Lecture 16](#page-52-0) [Lecture 17](#page-55-0) [Lecture 18](#page-58-0) [Lecture 19](#page-61-1) [Lecture 20](#page-64-0) [Lecture 21](#page-67-0) [Lecture 22](#page-70-0) [Lecture 23](#page-73-0) [Lecture 24](#page-76-0) Start of

[lecture 1](https://notes.ggim.me/Galois#lecturelink.1)

0 Introduction

Galois Theory is named after the French mathematician Evariste Galois (1811-1832). It is the study of roots of polynomials (or more generally field extensions).

It can be used to show that certain classical problems cannot be solved – for example there is no formula (in terms of radicals) for the roots of a general polynomial of degree n when $n \geq 5$. (Radicals means $+$, $-$, \times , \div , ψ). This is related to the fact that the alternating group A_n is simple for $n \geq 5$.

More positively, Galois theory is foundational to the study of Algebraic Number Theory and Algebraic Geometry.

Prerequisites: Linear Algebra and GRM

1 Field Extensions

Definition (Field). A *field* K is a ring (commutative with a 1, with $0_K \neq 1_K$) in which every non-zero element has an inverse under ×.

Definition (Characteristic)**.** The *characteristic* ofa [field](#page-3-1) K is the least positive integer p (necessarily prime) such that $p \cdot 1_K = 0_K$, or 0 if no such integer exists.

Then K contains a smallest subfield (called its prime subfield) which is isomorphic to $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ if K has [characteristic](#page-3-2) p, and to Q if it has characteristic 0.

Lemma1.1. Let K be a [field](#page-3-1) and $0 \neq f \in K[X]$. Then f has \leq deg f roots in K.

Proof. By induction on $n = \deg f$. If f has no roots then there is nothing to prove.

Otherwise let $a \in K$ be a root of f. Then $f(X) = (X - a)g(X)$ with $g \in K[X]$, where $\deg g = n - 1$. If $b \in K$ is a root of f, then either $b = a$ or $g(b) = 0$. Therefore

> $|\{\text{roots of } f \text{ in } K\}| \leq 1 + |\{\text{roots of } g \text{ in } K\}|$ $\leq 1 + (n - 1)$ (by induction) \Box $= n$

Definition(Field extension). Let L be a [field](#page-3-1) and $K \subset L$ a subfield (i.e. a subset whichis a [field](#page-3-1) under the same operations $+$ and \times).

We say L is an *extension* of K , written L/K .

We note that L and K necessarily have the same [characteristic.](#page-3-2)

Example.

- (i) \mathbb{C}/\mathbb{R} , $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$, \mathbb{R}/\mathbb{Q} .
- (ii)Adjoining a root of an irreducible polynomial: Let K be a [field](#page-3-1) and $f \in K[X]$ an irreducible polynomial. We recall from GRM that $K[X]$ is Euclidean, hence a PID. Therefore $(f) \subset K[X]$ is a maximal ideal and hence $L = \frac{K[X]}{(f)}$ $\frac{\Lambda[X]}{(f)}$ is a [field](#page-3-3) [extension](#page-3-3) of K and $\alpha = X + (f) \in L$ is a root of f.

For example taking $K = \mathbb{R}$, $f = X^2 + 1$ gives the first example in (i).

Let L/K be a [field extension.](#page-3-3) Then $+$ in L and multiplication by elements in K make L a vector space over K (for example $\mathbb C$ is an $\mathbb R$ vector space).

Definition(Degree of an Extension). Let L/K be a [field extension.](#page-3-3) We say L/K is *finite* if L is finite dimensional as a K-vector space, in which case we write $[L: K] = \dim_K L$ for its dimension, which we call the *degree* of $L \mid K$.

If not, we say L/K is an *infinite extension* and write $[L:K] = \infty$.

 L/K is a quadratic (cubic, quartic, ...) [extension](#page-3-5) if $[L:K] = 2(3,4,\ldots)$.

Example (Continued)**.**

(i) $[\mathbb{C} : \mathbb{R}] = 2$ $[\mathbb{C} : \mathbb{R}] = 2$ $[\mathbb{C} : \mathbb{R}] = 2$ (basis 1, *i*), $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ (basis 1, $\sqrt{ }$) 2)

 $[\mathbb{R} : \mathbb{Q}] = \infty$ $[\mathbb{R} : \mathbb{Q}] = \infty$ $[\mathbb{R} : \mathbb{Q}] = \infty$ (exercise: use countability).

(ii) If $L = \frac{K[X]}{(f)}$ $L = \frac{K[X]}{(f)}$ $L = \frac{K[X]}{(f)}$ where $f \in K[X]$ irreducible then $[L: K] = \deg f$. Indeed if $\alpha = X + (f) \in L$ and $n = \deg f$ then $1, \alpha, \ldots, \alpha^{n-1}$ is a K-basis for L.

Remark. Let K, L be [fields](#page-3-1) and $\phi: K \to L$ a ring homomorphism. Then ker(ϕ) is anideal in K, but K is a [field,](#page-3-1) so ker(ϕ) = {0} or ker(ϕ) = K. But by definition, a ring homomorphism must have $\phi(1_K) = 1_L$, so can't have ker $(\phi) = K$. So must have ker(ϕ) = {0}, i.e. ϕ is injective. We call ϕ an *embedding* of K in L.

Wemay use ϕ to identify K as a subfield of L, i.e. we get a [field extension](#page-3-3) L/K .

Example. Taking $K = \mathbb{F}_2$, $f = X^+X + 1 \in \mathbb{F}_2[X]$ (which is irreducible) gives $L = \frac{\mathbb{F}_2[X]}{(X^2 + X + 1)}$ a [field](#page-3-1) with 4 elements.

Proposition 1.2 (Possible sizes of finite [fields\)](#page-3-1). Let K be a finite [field](#page-3-1) of [charac](#page-3-2)[teristic](#page-3-2) p (necessarily > 0). Then $|K| = p^n$ $|K| = p^n$ $|K| = p^n$ where $n = [K : \mathbb{F}_p]$.

 \Box

Proof. $[K : \mathbb{F}_p] = n \implies K \equiv \mathbb{F}_p^n$ $[K : \mathbb{F}_p] = n \implies K \equiv \mathbb{F}_p^n$ $[K : \mathbb{F}_p] = n \implies K \equiv \mathbb{F}_p^n$ as an \mathbb{F}_p -vector space.

Later we will show that (up to isomorphism) there is exactly one [field](#page-3-1) of order p^n for each prime power p^n .

Themultiplicative group of a [field](#page-3-1) K is the set $K^* = K \setminus \{0\}$, which is an abelian group under ×.

Proposition1.3. If K is a [field](#page-3-1) then any finite subgroup $G \subset K^*$ $G \subset K^*$ $G \subset K^*$ is cyclic. In particular if K is a finite [field](#page-3-1) then K^* is cyclic.

Proof. The structure theorem for finite abelian groups gives

$$
G \equiv C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t}
$$

where $1 < d_1 | d_1 | \cdots | d_t$. If G is not cyclic then picking a prime dividing d_1 shows that G contains a subgroup isomorphic to $C_p \times C_p$. Hence the polynomial $X^p - 1$ has $\geq p^2$ roots in K, which contradicts [Lemma 1.1.](#page-3-6) \Box

Start of

Proposition 1.4 (Frobenius ring homomorphism). Let R be a ring of characteristic p (p a prime). Then the *Frobenius* $\phi: R \to R$, $x \mapsto x^p$ is a ring homomorphism.

Proof. Clearly $\phi(1) = 1$ and $\phi(xy) = \phi(x)\phi(y)$. Also,

$$
(X + y)^p = x^p + y^p + \sum_{r=1}^{p-1} {p \choose r} x^{p-r} y^r
$$

For $1 \leq r \leq p-1$ the binomial coefficient $\binom{p}{r}$ $\binom{p}{r} = \frac{p!}{r!(p-r)!}$ is divisible by p (since p is prime). Therefore $\phi(x+y) = (x+y)^p = x^p + y^p = \phi(x) + \phi(y)$.

Remark. We have $\phi(a) = a$ for all $a \in \mathbb{F}_p \subset R$ (proof by induction on a), which implies $a^p \equiv a \pmod{p}$ for all integers a (Fermat's Little Theorem).

Theorem 1.5 (Tower Law). Let M/L and L/K be [field extensions.](#page-3-3) Then M/K is [finite](#page-4-0) if and only if M/L and L/K are [finite.](#page-4-0) In this case,

$$
[M:K] = [M:L][L:K]
$$

Proof. The forwards direction holds since any K-basis for M spans M as an L-vector space, and L is a K -vector subspace of M .

We now suppose that M/L and L/K are [finite,](#page-4-0) say v_1, \ldots, v_n is a K-basis for L, w_1, \ldots, w_m is a L-basis for M. We claim that $\{v_i w_j\}_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ is a K -basis for M .

(spanning) If $x \in M$ then $x = \sum_j \lambda_j w_j$ for some $\lambda_j \in L$ and $\lambda_j = \sum_i \mu_{ij} v_i$ for some $\mu_{ij} \in K$. Therefore $x = \sum_{i,j} \mu_{ij} v_i w_j$.

(independent) Suppose $\sum_{i,j} \mu_{ij} v_i w_i = 0$ for some $\mu_{ij} \in K$. Then

$$
\sum_{j} \underbrace{\left(\sum_{i} \mu_{ij} v_i\right)}_{\in L} w_j = 0
$$

 w_1, \ldots, w_m are linearly independent over L so $\sum_i \mu_{ij} v_i = 0$ for all j. Also, v_1, \ldots, v_n are linearly independent over K so $\mu_{ij} = 0$ for all i, j.

This K-basis for M then easily implies the desired result.

 \Box

Definition1.6. Let L/K be a [field extension.](#page-3-3) Let $\alpha_1, \ldots, \alpha_n \in L$.

$$
K[\alpha_1,\ldots,\alpha_n] = \{f(\alpha_1,\ldots,\alpha_n) \mid f \in K[X_1,\ldots,X_n]\}
$$

This is the smallest subring of L to contain K and $\alpha_1, \ldots, \alpha_n$.

$$
K(\alpha_1,\ldots,\alpha_n)=\left\{\frac{f(\alpha_1,\ldots,\alpha_n)}{g(\alpha_1,\ldots,\alpha_n)}:f,g\in K[X_1,\ldots,X_n],g(\alpha_1,\ldots,\alpha_n)\neq 0\right\}
$$

This is the smallest subfield of L to contain K and $\alpha_1, \ldots, \alpha_n$.

Example.
$$
\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}
$$
 (use that $\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2}$).
Note that $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(1+\sqrt{2}) = \mathbb{Q}\left(\frac{17}{3-\sqrt{2}}\right)$ etc.

Remark. In [Definition 1.6,](#page-6-1) another way to see the "smallest" subring / subfield exists is to take the intersection of all such subrings / subfields.

Exercise: Check that

$$
K(\alpha_1) = K(\alpha_1, \ldots, \alpha_{n-1})(\alpha_n) = K(\alpha_1)(\alpha_2, \ldots, \alpha_n)
$$

Definition (Simple extension)**.** A [field extension](#page-3-3) [L/K](#page-3-4) is a *simple [extension](#page-3-5)* if $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$ for some $\alpha \in L$.

Definition1.7 (Minimal polynomial). Let L/K be a [field extension](#page-3-3) and $\alpha \in L$. Then there is a unique ring homomorphism $\phi: K[X] \to L$ $\phi: K[X] \to L$ $\phi: K[X] \to L$ such that $\phi(c) = c$ for all $c \in K$ and $\phi(X) = \alpha$. Indeed,

$$
\phi\left(\sum c_i X^i\right) = \sum c_i \alpha^i
$$

(i.e. ϕ is "evaluation at α "). Since $K[X]$ $K[X]$ is a PID, we have that ker(ϕ) = (f) for some $f \in K[X]$ $f \in K[X]$ $f \in K[X]$.

We say α is *algebraic* over K if $f \neq 0$. In this case f is irreducible and unique up to multiplication by elements of K^* K^* . We scale f so that it is monic, and call it the *minimal polynomial* of α over [K](#page-6-0). It is the monic polynomial in K[X] of least degree with α as a root.

By the first isomorphism theorem for rings,

$$
\frac{K[X]}{(f)} \cong K[\alpha]
$$

Note that by [Example Sheet 1, Question 2\(ii\)](https://www.maths.cam.ac.uk/undergrad/examplesheets) we have that the left side isa [field.](#page-3-1) Hence $K(\alpha) = K[\alpha]$ $K(\alpha) = K[\alpha]$. For this reason, we usually write $K(\alpha)$ instead of $K[\alpha]$ in these cases.

Moreover, $[K(\alpha):K] = \deg f$, since if $\deg f = n$ then $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ is a K-basis for $K(\alpha)$ $K(\alpha)$.

Example. $K = \mathbb{Q}$, $L = \mathbb{R}$, $\alpha = \sqrt[d]{2}$. α is a root of $f(X) = X^d - 2$, and f is irreducible in $\mathbb{Z}[X]$ $\mathbb{Z}[X]$ $\mathbb{Z}[X]$ by Eisenstein's criterion (with $p = 2$). Therefore by Gauss' Lemma it is irreducible in $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ $\mathbb{Q}[X]$, so f is the [minimal polynomial](#page-7-0) of α . So $\mathbb{Q}(\sqrt[d]{2})$: \mathbb{Q} \mathbb{Q} \mathbb{Q} = d.

Remark (A method for computing inverse). Let $\alpha \in L$ be [algebraic](#page-7-1) over K with [minimal polynomial](#page-7-0) f. Let $0 \neq \beta \in K[\alpha]$ $0 \neq \beta \in K[\alpha]$ $0 \neq \beta \in K[\alpha]$, say $\beta = q(\alpha)$ for some $q \in K[X]$. Since f is irreducible and $\beta \neq 0$, we see that f and g are coprime. Running Euclid's algorithm gives $r, s \in K[X]$ $r, s \in K[X]$ $r, s \in K[X]$ such that $r(X)f(X) + s(X)g(X) = 1$. Plugging in $X = \alpha$, we get

$$
r(\alpha) \underbrace{f(\alpha)}_{=0} + s(\alpha) \underbrace{g(\alpha)}_{=\beta} = 1,
$$

therefore $\frac{1}{\beta} = s(\alpha)$.

Start of

[lecture 3](https://notes.ggim.me/Galois#lecturelink.3)**Definition 1.8** (Transcendental number). Let L/K be a [field extension.](#page-3-3) $\alpha \in L$ is *transcendental* over K if it is not [algebraic.](#page-7-1) In this case $K[\alpha] \cong K[X]$ $K[\alpha] \cong K[X]$ and $K(\alpha) \cong K(X).$ $K(\alpha) \cong K(X).$

> **Remark.**Since $K[X]$ $K[X]$ is not a [field](#page-3-1) and $1, X, X^2, \ldots$ are linearly independent over [K](#page-6-0), we have $K(\alpha) \neq K[\alpha]$ and $[K(\alpha) : K] = \infty$ $[K(\alpha) : K] = \infty$ $[K(\alpha) : K] = \infty$.

> **Definition**(Algebraic Field). We say a [field extension](#page-3-3) L/K is *algebraic* if every $\alpha \in L$ is [algebraic](#page-7-1) over K.

Remark.

- (i) We have $[K(\alpha):K] < \infty$ $[K(\alpha):K] < \infty$ $[K(\alpha):K] < \infty$ if and only if α is [algebraic](#page-7-1) over K.
- (ii) If $[L: K] < \infty$ $[L: K] < \infty$ $[L: K] < \infty$ then for any $\alpha \in L$ we certainly have $[K(\alpha): K] < \infty$. So any [finite](#page-4-0) [extension](#page-3-5)is [algebraic,](#page-8-1) but the inverse is not true.

Example 1.9. $K = \mathbb{Q}$, $L = \bigcup_{n=1}^{\infty} \mathbb{Q}[\sqrt[2^n]{2}] \subset \mathbb{R}$. This is a union of a nested sequence of [fields](#page-3-1)

$$
\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{Q}(\sqrt[8]{2}) \subset \cdots
$$

andso this is a [field.](#page-3-1) $[L : K] = \infty = \infty$ $[L : K] = \infty = \infty$ $[L : K] = \infty = \infty$ since $[\mathbb{Q}(\sqrt[2^n]{n}) : \mathbb{Q}] = 2^n$ is unbounded.But every $\alpha \in L$ belongs to a [finite](#page-4-0) [extension](#page-3-5) of $\mathbb Q$ and so is [algebraic](#page-7-1) over \mathbb{Q} . Therefore L/\mathbb{Q} L/\mathbb{Q} is [algebraic.](#page-8-1)

Remark1.10.Classically $\alpha \in \mathbb{C}$ is called [algebraic](#page-7-1) / transcendental if it is algebraic $/$ [transcendental](#page-8-2) over $\mathbb{Q}.$

A countability argument (see IA Numbers and Sets) shows that [transcendental](#page-9-0) numbers exist. Liouville showed that $\sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is [transcendental.](#page-9-0)

It was proved in the 19th century that e and π are [transcendental](#page-9-0) (Hermite $\&$ Lindeman).

Example 1.11.

- (i) Let $f(X) = X^d n$ $(d, n \in \mathbb{Z}, d \geq 2, n \neq 0)$. Suppose there exists a prime p such that when we write $n = p^e m$ with $p \nmid m$, then $(d, e) = 1$. We claim that f is irreducible in $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ $\mathbb{Q}[X]$. Equivalently we show that $[\mathbb{Q}(\alpha):\mathbb{Q}] = d$ $[\mathbb{Q}(\alpha):\mathbb{Q}] = d$ $[\mathbb{Q}(\alpha):\mathbb{Q}] = d$ where and function if $\mathbb{Q}[X]$. Equivalently we show that $\mathbb{Q}(\alpha) \cdot \mathbb{Q} = a$ where $\alpha = \sqrt[d]{n}$. By Euclid's algorithm there exist $r, s \in \mathbb{Z}$ such that $rd + se = 1$ (we may arrange $s > 0$). Then $p^{dr} n^s = p^{dr} (p^e m)^s = p m^s$. Let $\beta = p^r \alpha^s$ so that $\beta^d = pm^s$. Then β is a root of $g(X) = X^d - pm^s$ $g(X) = X^d - pm^s$ $g(X) = X^d - pm^s$, which is irreducible in $\mathbb{Z}[X]$ by Eisenstein's criterion, so irreducible in $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ by Gauss' Lemma, therefore $[\mathbb{Q}(\beta) : \mathbb{Q}] = d$ $[\mathbb{Q}(\beta) : \mathbb{Q}] = d$. But $\mathbb{Q}(\beta) \subset \mathbb{Q}(\alpha)$ and $[\mathbb{Q}(\alpha) : \mathbb{Q}] \leq \deg f = d$. This gives $[\mathbb{Q}(\alpha):\mathbb{Q}]=d$ as required.
- (ii) Let p be an odd prime, $\zeta_p = e^{2\pi i/p}$ and

$$
\alpha = 2\cos\left(\frac{2\pi}{p}\right) = \zeta_p + \zeta_p^{-1}.
$$

Let's compute $[\mathbb{Q}(\alpha):\mathbb{Q}].$ $[\mathbb{Q}(\alpha):\mathbb{Q}].$ $[\mathbb{Q}(\alpha):\mathbb{Q}].$ ζ_p is a root of

$$
f(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + \dots + X^2 + X + 1.
$$

which is irreducible by Eisenstein's criterion applied to $f(X + 1)$. Therefore $[\zeta_p(\cdot) \mathbb{Q}] = \deg f = p-1$ $[\zeta_p(\cdot) \mathbb{Q}] = \deg f = p-1$ $[\zeta_p(\cdot) \mathbb{Q}] = \deg f = p-1$. Note that $\mathbb{Q}(\zeta_p)/\mathbb{Q}(\alpha)/\mathbb{Q}$ $\mathbb{Q}(\zeta_p)/\mathbb{Q}(\alpha)/\mathbb{Q}$ $\mathbb{Q}(\zeta_p)/\mathbb{Q}(\alpha)/\mathbb{Q}$, so we will try to use [Tower](#page-5-2) [Law](#page-5-2) to find the [degree](#page-4-0) of the [extension](#page-3-5) $\mathbb{Q}(\alpha)/\mathbb{Q}$ $\mathbb{Q}(\alpha)/\mathbb{Q}$ $\mathbb{Q}(\alpha)/\mathbb{Q}$ $\mathbb{Q}(\alpha)/\mathbb{Q}$ $\mathbb{Q}(\alpha)/\mathbb{Q}$. ζ_p is a root of

$$
g(X) = (X - \zeta_p)(X - \zeta_p^{-1}) = X^2 - \alpha X + 1 \in \mathbb{Q}(\alpha)[X]
$$

Therefore $[\mathbb{Q}(\zeta_p) : \mathbb{Q}(\alpha)] \leq \deg g = 2$ $[\mathbb{Q}(\zeta_p) : \mathbb{Q}(\alpha)] \leq \deg g = 2$. But $\alpha \in \mathbb{R}$ and $\zeta_p \notin \mathbb{R}$ so $\zeta_p \notin \mathbb{Q}(\alpha) \subset \mathbb{R}$. So $[\mathbb{Q}(\zeta_p) : \mathbb{Q}(\alpha)] = 2$ $[\mathbb{Q}(\zeta_p) : \mathbb{Q}(\alpha)] = 2$, so by [Tower Law](#page-5-2) $[\mathbb{Q}(\alpha) : \mathbb{Q}] = \frac{\hat{p}-1}{2}$.

(iii) Suppose m, n and mn are not perfect squares. Let $\alpha = \sqrt{m} + \sqrt{n}$. Let's suppose m, n m, n and mn are not perfect squares. Let $\alpha = \sqrt{m + \sqrt{n}}$
compute $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $[\mathbb{Q}(\alpha) : \mathbb{Q}]$. Clearly $\mathbb{Q}(\alpha) \subset \mathbb{Q}(\sqrt{m}, \sqrt{n})$. Conversely we have

$$
m = (\alpha - \sqrt{n})^2 = \alpha^2 - 2\alpha\sqrt{n} + n
$$

$$
\implies \sqrt{n} = \frac{\alpha^2 - m + n}{2\alpha}
$$

so $\sqrt{n} \in \mathbb{Q}(\alpha)$ $\sqrt{n} \in \mathbb{Q}(\alpha)$ $\sqrt{n} \in \mathbb{Q}(\alpha)$, and similarly $\sqrt{m} \in \mathbb{Q}(\alpha)$. So therefore $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{m}, \sqrt{n})$. So $\sqrt{n} \in \mathcal{Q}(\alpha)$ $\sqrt{n} \in \mathcal{Q}(\alpha)$ $\sqrt{n} \in \mathcal{Q}(\alpha)$, and similarly $\sqrt{m} \in \mathcal{Q}(\alpha)$. So therefore $\mathcal{Q}(\alpha) = \mathcal{Q}(\sqrt{m}, \sqrt{n})$.
Note that $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})/\mathcal{Q}$ $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})/\mathcal{Q}$ $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})/\mathcal{Q}$, with $[\mathcal{Q}(\sqrt{n}) : \mathcal{Q}] = 2$ $[\mathcal{Q}(\sqrt{n}) : \mathcal{Q}] = 2$ $[\mathcal{Q}(\sqrt{n}) : \mathcal{Q}] = 2$. We also know Note that $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})$ $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})$ $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})$ $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})$ $\mathcal{Q}(\sqrt{m}, \sqrt{n})/\mathcal{Q}(\sqrt{n})$, with $\mathcal{Q}(\sqrt{n})$. $\mathcal{Q}(\sqrt{n}) = 2$. We also know $\mathcal{Q}(\sqrt{n})(\sqrt{m}) : \mathcal{Q}(\sqrt{n}) \leq 2$ $\mathcal{Q}(\sqrt{n})(\sqrt{m}) : \mathcal{Q}(\sqrt{n}) \leq 2$ $\mathcal{Q}(\sqrt{n})(\sqrt{m}) : \mathcal{Q}(\sqrt{n}) \leq 2$. Suppose $\sqrt{m} \in \mathcal{Q}(\sqrt{n})$. Then $\sqrt{m} = r + s\sqrt{n}$ for some $r, s \in \mathbb{Q}$. Therefore $m = r^2 + 2rs\sqrt{n} + s^2n$. Since $\sqrt{n} \notin \mathbb{Q}$ we must have $rs = 0$. If $r = 0$ then mn will be a square, and if $s = 0$ then m is a square. $\mathcal{L} \mathcal{L} = \mathcal{L}$. If $\mathcal{L} = 0$ then mn will be a square, and if $s = 0$ then m is a square.
Either way we get a contradiction. So $[\mathbb{Q}(\sqrt{m}, \sqrt{n}) : \mathbb{Q}(\sqrt{n})] = 2$ $[\mathbb{Q}(\sqrt{m}, \sqrt{n}) : \mathbb{Q}(\sqrt{n})] = 2$ $[\mathbb{Q}(\sqrt{m}, \sqrt{n}) : \mathbb{Q}(\sqrt{n})] = 2$. So by [Tower](#page-5-2) [Law](#page-5-2), $[\mathbb{Q}(\alpha):\mathbb{Q}]=4.$ $[\mathbb{Q}(\alpha):\mathbb{Q}]=4.$ $[\mathbb{Q}(\alpha):\mathbb{Q}]=4.$

Start of

[lecture 4](https://notes.ggim.me/Galois#lecturelink.4)**Lemma 1.12.** Let L/K be a [field extension](#page-3-3) and $\alpha_1, \ldots, \alpha_n \in L$. Then

 $\alpha_1, \ldots, \alpha_n$ are [algebraic](#page-7-1) over $K \iff [K(\alpha_1, \ldots, \alpha_n) : K] < \infty$.

Proof. The case $n = 1$ was a remark in the previous lecture.

 \Rightarrow By induction on on *n* using [Tower Law.](#page-5-2)

 \Leftarrow Clear since $K(\alpha_1)$ $K(\alpha_1)$ ⊂ $K(\alpha_1, \ldots, \alpha_n)$.

 \Box

Corollary 1.13. Let L/K be any [field extension.](#page-3-3) Then the set

 $\{\alpha \in L \mid \alpha \text{ is algebraic over } K\}$ $\{\alpha \in L \mid \alpha \text{ is algebraic over } K\}$ $\{\alpha \in L \mid \alpha \text{ is algebraic over } K\}$

is a subfield of L.

Proof. If α, β are [algebraic](#page-7-1) over K then by [Lemma 1.12](#page-11-1) $[K(\alpha, \beta) : K] < \infty$. Let $\gamma = \alpha \pm \beta$, or $\alpha\beta$ or (if $\alpha \neq 0$) $\frac{1}{\alpha}$ $\frac{1}{\alpha}$. Then $\gamma \in K(\alpha, \beta)$, so since $[K(\alpha, \beta, \gamma) : K] < \infty$, by [Lemma 1.12,](#page-11-1) we get that γ is [algebraic](#page-7-1) over K.

Example. Taking $K = \mathbb{Q}$ and $L = \mathbb{C}$ we see that

 $\overline{\mathbb{Q}} = \{\text{algebraic numbers}\}\$ $\overline{\mathbb{Q}} = \{\text{algebraic numbers}\}\$ $\overline{\mathbb{Q}} = \{\text{algebraic numbers}\}\$

isa [field.](#page-3-1)

Since $\overline{\mathbb{Q}} \subset \mathbb{Q}((\sqrt[3]{2})$ $\overline{\mathbb{Q}} \subset \mathbb{Q}((\sqrt[3]{2})$ $\overline{\mathbb{Q}} \subset \mathbb{Q}((\sqrt[3]{2})$ and $[\mathbb{Q}((\sqrt[4]{2}) : \mathbb{Q}] = d$ for all d, we see that $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$.

Proposition1.14. Let $M/L/K$ be a [field extension.](#page-3-3) Then

 M/K is [algebraic](#page-8-1) $\iff M/L$ and L/K are both algebraic

Proof. \Rightarrow Every element of M is [algebraic](#page-7-1) over K, hence algebraic over L, so M/L is [algebraic.](#page-8-1) Also, as $L \subset M$, L is [algebraic](#page-8-1) over K.

 \Leftarrow Let $\alpha \in M$. We must show that α is [algebraic](#page-7-1) over K. Since M/L is [algebraic,](#page-8-1) α is a root of some

$$
f(X) = c_n X^n + \dots + c_1 X + c_0 \in L[X]
$$

Let $L_0 = K(c_0, c_1, \ldots, c_n)$. Since each c_i is [algebraic](#page-7-1) over K, [Lemma 1.12](#page-11-1) gives $[L_0 : K] < \infty$ $[L_0 : K] < \infty$ $[L_0 : K] < \infty$. But f has coefficients in L_0 , so $[L_0(\alpha) : L_0] \leq \deg f < \infty$ $[L_0(\alpha) : L_0] \leq \deg f < \infty$ $[L_0(\alpha) : L_0] \leq \deg f < \infty$. By [Tower](#page-5-2) [Law](#page-5-2) $[L_0(\alpha):K]<\infty$ $[L_0(\alpha):K]<\infty$ $[L_0(\alpha):K]<\infty$. Therefore α is [algebraic](#page-7-1) over K. $\hfill \square$

2 Ruler and Compass Constructions

We use our results on [field extensions](#page-3-3) to show that certain classical problems cannot be solved.

Definition (Ruler and Compass Construction). Let $S \subset \mathbb{R}^2$ be a finite set of points. We may:

- (i) Draw a straight line through any 2 distinct points in S.
- (ii) Draw a circle with centre any point in S and radius the distance between 2 points in S.
- (iii) Enlarge S by adjoining any point of intersection of 2 distinct lines or circles.

A point $(x, y) \in \mathbb{R}^2$ is *constructible* from S if we can enlarge S to contain (x, y) by a finite sequence of the above operations.

A number $x \in \mathbb{R}$ is constructible if $(x, 0)$ can be [constructed](#page-13-1) from $\{(0, 0), (1, 0)\}.$

We will relate this to the following:

Definition (Constructible Field). Let $K \subset \mathbb{R}$ be a subfield. We say that K is constructible if there exists integer $n \geq 0$ and a sequence of subfields of \mathbb{R}

$$
\mathbb{Q} = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_n
$$

such that $[F_i : F_{i-1}] = 2$ $[F_i : F_{i-1}] = 2$ $[F_i : F_{i-1}] = 2$ for all i and $K \subset F_n$.

Remark. We see by [Tower Law](#page-5-2) that K [constructible](#page-13-2) \implies $[K: \mathbb{Q}]$ $[K: \mathbb{Q}]$ $[K: \mathbb{Q}]$ is a power of 2.

Theorem2.1. If $x \in \mathbb{R}$ is [constructible,](#page-13-3) then $\mathbb{Q}(x)$ $\mathbb{Q}(x)$ $\mathbb{Q}(x)$ is a [constructible](#page-13-2) subfield of \mathbb{R} .

Proof. Suppose $S \subset \mathbb{R}^2$ is a finite set of points all of whose coordinates belong to a [constructible](#page-13-2) [field](#page-3-1) K.

It suffices to show that if we adjoin $(x, y) \in \mathbb{R}^2$ to S using (iii), then $K(x, y)$ is also [constructible.](#page-13-2) Since K is [constructible,](#page-13-2) there exists a sequence $\mathbb{Q} = F_0 \subset F_1 \subset \cdots \subset F_n$ with $[F_i : F_{i-1}] = 2$ $[F_i : F_{i-1}] = 2$ $[F_i : F_{i-1}] = 2$ for all $1 \leq i \leq n$ and $K \subset F_n$.

The lines and circles in (i) and (ii) have equations of the form $ax + by = c$ and $(x - a)^2 +$ $(y-b)^2 = c$ with $a, b, c \in K$. If (x, y) is a point of intersection of 2 such lines or circles then $x = r + s\sqrt{v}, y = t + u\sqrt{v}$ for some $r, s, t, u, v \in K$ $r, s, t, u, v \in K$. Therefore $x, y \in K(\sqrt{v}) \subset F_n(\sqrt{v})$ $x, y \in K(\sqrt{v}) \subset F_n(\sqrt{v})$ $x, y \in K(\sqrt{v}) \subset F_n(\sqrt{v})$. Since $[F_n(\sqrt{v}): F_n]$ $[F_n(\sqrt{v}): F_n]$ $[F_n(\sqrt{v}): F_n]$ is 1 or 2, it follows that $K(x, y)$ $K(x, y)$ $K(x, y)$ is [constructible.](#page-13-2) \Box

Remark. It can be shown that $(x \pm y, 0)$, $(x/y, 0)$ and $(\sqrt{x}, 0)$ are [constructible](#page-13-4) from the set $\{(0, 0), (1, 0), (x, 0), (y, 0)\}.$

Using this, one can also prove that the converse of [Theorem 2.1](#page-13-5) holds, i.e. $\mathbb{Q}(x)$ $\mathbb{Q}(x)$ $\mathbb{Q}(x)$ is [constructible](#page-13-2) implies x is [constructible.](#page-13-3)

Corollary 2.2. If $x \in \mathbb{R}$ is [constructible](#page-13-3) then x is [algebraic](#page-7-1) over \mathbb{Q} \mathbb{Q} \mathbb{Q} and $[\mathbb{Q}(x) : \mathbb{Q}]$ $[\mathbb{Q}(x) : \mathbb{Q}]$ $[\mathbb{Q}(x) : \mathbb{Q}]$ is a power of 2.

Some Classical Problems

- (1) **Squaring the circle:** One classical problem is to [construct](#page-13-4) a square whose area is the same as that as a circle with unit radius. This amounts to [constructing](#page-13-3) the real number $\sqrt{\pi}$. This is impossible by and the fact that π is [transcendental](#page-9-0) (Lindeman).
- (2) **Duplicating the cube:** [Construct](#page-13-4) a cube whose volume is twice that of a given **Duplicating the cube:** Construct a cube whose volume is twice that of a given cube. This amounts to [construction](#page-13-3) of $\sqrt[3]{2}$. But $\sqrt[3]{2}$ has [minimal polynomial](#page-7-0) $X^3 - 2$ cube. This amounts to construction or $\nabla \angle$. Bu
so $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$, which is not a power of 2.
- (3) **Trisecting the angle:** One is to divide a given angle into 3 equal angles. Let us suppose the given angle is $120^{\circ} = \frac{2\pi}{3}$ $\frac{2\pi}{3}$. Since this is itself [constructible,](#page-13-3) if the trisection problem can be solved, then the angle $\frac{2\pi}{9}$ is [constructible,](#page-13-4) in other words the real numbers $\cos\left(\frac{2\pi}{9}\right)$ $\left(\frac{2\pi}{9}\right)$ and sin $\left(\frac{2\pi}{9}\right)$ $\left(\frac{2\pi}{9}\right)$ are [constructible.](#page-13-3) From the formula cos $3\theta =$ $4\cos^3\theta - 3\cos\theta$, we see that $2\cos\left(\frac{2\pi}{9}\right)$ $\left(\frac{2\pi}{9}\right)$ is a root of $f(X) = X^3 - 3X + 1$. Noting that $f(\pm 1) \neq 0$, and that f is monic, we can use Gauss' lemma to observe that f is irreducible in $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ $\mathbb{Q}[X]$. Therefore $[\mathbb{Q}(\cos(2\pi/9)) : \mathbb{Q}] = 3$, which is not a power of 2. So this construction is impossible.

Start of

[lecture 5](https://notes.ggim.me/Galois#lecturelink.5) **Remark.** The last example shows that a regular 9-gon cannot be [constructed](#page-13-4) with [ruler and compass.](#page-13-4)

> Later we will prove the result of Gauss which says that a regular n -gon is [con](#page-13-4)[structible](#page-13-4) if and only if $\phi(n)$ is a power of 2.

3 Splitting Fields

Question:Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ be a nonconstant polynomial. Is there a [field extension](#page-3-3) L/K in which f has a root? (or even better: an [extension](#page-3-5) in which f splits into linear factors)?

If $K \subset \mathbb{C}$ then the fundamental theorem of algebra shows we can factor f in $\mathbb{C}[X]$ $\mathbb{C}[X]$ $\mathbb{C}[X]$ as a product of linear polynomials. But what about $K = \mathbb{F}_p$?

Definition 3.1 (*K*-homomorphism). Let L/K and M/K be [field extensions.](#page-3-3) A K-homomorphism (or K-embedding) of L into M is a ring homomorphism $L \to M$ which is the identity on K.

Theorem 3.2. Let $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$ where α is [algebraic](#page-7-1) over K with [minimal polynomial](#page-7-0) f. Let M/K be any [field extension.](#page-3-3) Then there is a bijection

{K-homomorphism
$$
L \to M
$$
} \leftrightarrow {roots of f in M}
 $\tau \mapsto \tau(\alpha)$

In particular (by [Lemma 1.1\)](#page-3-6),

${K\text{-}homomorphisms } L \to M$ \leq deg f

Proof. Write $f = \sum_{i=0}^{d} c_i X^i$, $c_i \in K$. Let $\tau : L \to M$ be a K[-homomorphism.](#page-15-1) Then

$$
f(\tau(\alpha)) = \sum_{i} c_i \tau(\alpha)^i
$$

$$
= \tau \left(\sum_{i} c_i \alpha^i \right)
$$

$$
= \tau(f(\alpha))
$$

$$
= 0
$$

Therefore $\tau(\alpha) \in M$ is a root of f.

Injectivity: Since $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$, and K[-homomorphism](#page-15-1) $\tau : L \to M$ is uniquely determined by $\tau(\alpha)$.

Surjectivity: We saw earlier that evaluation at α gives an isomorphism $K[X]/(f) \rightarrow$ $K[X]/(f) \rightarrow$ $K(\alpha) = L$ $K(\alpha) = L$ where $X + (f) \mapsto \alpha$. Now let $\beta \in M$ be a root of f. Since f is irreducible it is the [minimal polynomial](#page-7-0) for β over K. Evaluation at β gives a ring homomorphism

$$
K[X] \to M
$$

$$
g \mapsto g(\beta)
$$

with kernel (f) . By the isomorphism theorem we get

$$
\frac{K[X]}{(f)} \xrightarrow{\psi} M
$$

$$
X + (f) \mapsto \beta
$$

Since ϕ, ψ are K[-homomorphisms](#page-15-1) and ϕ is an isomorphism it follows that

$$
\tau = \psi \cdot \phi^{-1} : L \to M
$$

is a K[-homomorphism](#page-15-1) with $\tau(\alpha) = \beta$.

Example. There are exactly 2 Q[-homomorphism](#page-15-1) $\mathbb{Q}(\sqrt{2}) \to \mathbb{R}$ given by $a + b\sqrt{2}$ Example. There are exactly 2 Q-homomorphism $\mathbb{Q}(\sqrt{2}) \to \mathbb{R}$ given by $a + b\sqrt{2} \mapsto$ $b\sqrt{2}$ and $a + b\sqrt{2} \mapsto a - b\sqrt{2}$, $a, b \in \mathbb{Q}$. We actually need a slight variant of [Theorem 3.2.](#page-15-2) The proof is exactly the same, but the extra generality is useful for inductive proofs.

Definition 3.3 (σ -embedding). Let L/K and M/K' be [field extensions.](#page-3-3) Let $\sigma: K \to K'$ $\sigma: K \to K'$ $\sigma: K \to K'$ be a [field](#page-3-1) [embedding.](#page-4-1) A σ -embedding $\tau: L \to M$ is an [embedding](#page-4-1) which extends σ , i.e. $\tau(x) = \sigma(x) \,\forall x \in K$. Equivalently, $\sigma = \tau|_K$ is the restriction of τ to K .

 \Box

Note. Taking $\sigma = id : K \to K$ we recover the definition of a K[-embedding.](#page-15-1)

Theorem 3.4. Let $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$ where α is [algebraic](#page-7-1) over K with [minimal polynomial](#page-7-0) f.Let $\sigma: K \to K'$ be a [field](#page-3-1) [embedding,](#page-4-1) and M/K' any [field extension.](#page-3-3) Then there is a bijection

$$
\{\sigma\text{-embeddings }L \to M\} \to \{\text{roots of }\sigma f \text{ in } M\}
$$

$$
\tau \mapsto \tau(\alpha)
$$

(where σf is the polynomial in $K'[X]$ $K'[X]$ obtained by applying σ to each coefficient of f). In particular,

 $\#\{\sigma\text{-embeddings } L \to M\} \leq \deg f$ $\#\{\sigma\text{-embeddings } L \to M\} \leq \deg f$ $\#\{\sigma\text{-embeddings } L \to M\} \leq \deg f$

Example. Let $K = \mathbb{Q}(\sqrt{2})$ $K = \mathbb{Q}(\sqrt{2})$ $K = \mathbb{Q}(\sqrt{2})$ and let $L = \mathbb{Q}(\alpha)$ where $\alpha = \sqrt{1 + \sqrt{2}}$ (exercise: check **Example.** Let $K = \mathbb{Q}(V^2)$ $K = \mathbb{Q}(V^2)$ and let $L = \mathbb{Q}(\alpha)$ where $\alpha = V^1 + V^2$ (exercise: cneck that $1 + \sqrt{2}$ is not a square in K, so that we get $[L:K] = 2$). There are exactly 2 Example 1 + $\sqrt{2}$ is not a square in Λ , so that we get
K[-embeddings](#page-15-3) $L \to \mathbb{R}$ given by $\alpha \mapsto \pm \sqrt{1 + \sqrt{2}}$.

However, if $\sigma: K \to K$, $a+b$ √ $2 \mapsto a - b$ $f \sigma: K \to K$, $a+b\sqrt{2} \mapsto a-b\sqrt{2}$ then there are no σ [-embeddings](#page-16-0) $L \to \mathbb{R}$ (since $1 - \sqrt{2} < 0$).

Definition3.5 (splitting field). Let K be a [field.](#page-3-1) Let $0 \neq f \in K[X]$ $0 \neq f \in K[X]$ $0 \neq f \in K[X]$. An extension L/K is a *splitting field* of f over K if

- (i) f splits into linear factors over L.
- (ii) $L = K(\alpha_1, \ldots, \alpha_n)$ where α_i are the roots of f in L.

Remark. (ii) is equivalent to saying f does not split into linear factors over any (proper) subfield of L containing K .

Start of

[lecture 6](https://notes.ggim.me/Galois#lecturelink.6) **Note.** (ii) implies that $[L: K] < \infty$ $[L: K] < \infty$ $[L: K] < \infty$.

Theorem 3.6 (Existence of splitting fields). Let $0 \neq f \in K[X]$ $0 \neq f \in K[X]$ $0 \neq f \in K[X]$. Then there exists a [splitting field](#page-17-1) for f over K .

Proof. (We adjoin roots of f one at a time).

The proof is by induction on the degree of f. If deg $f \leq 1$ then $L = K$ is the [splitting](#page-17-1) [field](#page-17-1).

Nowassume every polynomial of degree \lt deg f has a [splitting field.](#page-17-1) Let q be an irreducible factor of f. Let $K_1 = K[X]/(g)$ $K_1 = K[X]/(g)$ and $\alpha_1 = X + (g) \in K[X]$, with $K_1 = K(\alpha_1)$. Then $f(\alpha_1) = 0$. So $f(X) = (X - \alpha_1)f_1(X)$ for some $f_1 \in K_1[X]$ $f_1 \in K_1[X]$ $f_1 \in K_1[X]$ with deg $f_1 < \deg f$.

Byinduction hypothesis there exists a [splitting field](#page-17-1) L for f_1 over K_1 , so $L = K_1(\alpha_2, \ldots, \alpha_n)$ where $\alpha_2, \ldots, \alpha_n$ are the roots of f_1 in L. We claim that L is a [splitting field](#page-17-1) for f over K. Since f_1 splits in L, so does $f(X) = (X - \alpha) f_1(X)$. Moreover $L = K_1(\alpha_2, \ldots, \alpha_n)$ $K(\alpha_1, \ldots, \alpha_n)$ and $\alpha_1, \ldots, \alpha_n$ are roots of f. Therefore L satisfies (i) and (ii). \Box

Theorem 3.7 (Uniqueness of splitting fields). Let $0 \neq f \in K[X]$ $0 \neq f \in K[X]$ $0 \neq f \in K[X]$. Let L be a [splitting field](#page-17-1) of f over K. Let $\sigma: K \hookrightarrow M$ be any [field embedding](#page-4-2) such that $\sigma f \in M[X]$ $\sigma f \in M[X]$ $\sigma f \in M[X]$ splits. Then

- (i) There exists a σ [-embedding](#page-16-0) $\tau : L \hookrightarrow M$.
- (ii)If M is a [splitting field](#page-17-1) for σf over σK then any τ as in (i) is an isomorphism.

In particular any two [splitting fields](#page-17-1) for f over K are K [-isomorphic.](#page-15-1)

Proof.

(i) By induction on $n = [L : K]$ $n = [L : K]$ $n = [L : K]$. If $n = 1$ then $L = K$ and there is nothing to prove. So suppose $n > 1$ and let $q \in K[X]$ $q \in K[X]$ $q \in K[X]$ be an irreducible factor of f, of degree > 1 . Let $\alpha \in L$ be a root of g. Let $\beta \in M$ be a root of σg . By [Theorem 3.4,](#page-17-2) σ extends to an [embedding](#page-4-1) $\sigma_1 : K(\alpha) \to M$ $\sigma_1 : K(\alpha) \to M$ $\sigma_1 : K(\alpha) \to M$, $\alpha \mapsto \beta$. Then $[L : K(\alpha)] < [L : K]$. L is a [splitting](#page-17-1) [field](#page-17-1) of f over $K(\alpha)$ $K(\alpha)$ and $\sigma_1 f = \sigma f$ splits in M. So by the induction hypothesis σ_1 extends to an [embedding](#page-4-1) $\tau : L \to M$.

(ii) Pick any $\tau: L \hookrightarrow M$ as in (i). Let $\alpha_1, \ldots, \alpha_n$ be the roots of f in L. The roots of σf in M are $τα_1$, ..., $τα_n$ (consider splitting σf as a product of linear factors in twoways, and then use the fact that $M[X]$ $M[X]$ is a UFD). So if M is a [splitting field](#page-17-1) for σf over σK then

$$
M = \sigma K(\tau \alpha_1, \ldots, \tau \alpha_n) = \tau(K(\alpha_1, \ldots, \alpha_n)) = \tau(L)
$$

So τ is surjective, so it's an isomorphism (recall [field embeddings](#page-4-2) are always injective).

For the final statement, suppose L/K and M/K are [splitting fields](#page-17-1) for f over K, and let $\sigma: K \hookrightarrow M$ be the inclusion map. Then (i) and (ii) give a K[-isomorphism](#page-15-1) $L \to M$. \square

Warning. The previous theorem means that we can say "the [splitting field](#page-17-1) of f over K " since all such [fields](#page-3-1) are isomorphic.

However, the isomorphism between such [fields](#page-3-1) is not necessarily unique, an in fact in some cases we can use a non-identity automorphism.

Example. If $K \subset \mathbb{C}$ then by the fundamental theorem of algebra, one [splitting field](#page-17-1) for f over K is the subfield $K(\alpha_1,\ldots,\alpha_n)\subset\mathbb{C}$ where $\alpha_1,\ldots,\alpha_n\in\mathbb{C}$ are the roots of f .

(i) Consider

$$
f(X) = X^3 - 2 = (X - \sqrt[3]{2})(X - \omega \sqrt[3]{2})(X - \omega^2 \sqrt[3]{2}) \in \mathbb{Q}[X]
$$

Then $\mathbb{Q}(\omega, \sqrt[3]{2})$ is a [splitting field](#page-17-1) for f over \mathbb{Q} .

By the [Tower Law](#page-5-2) $[\mathbb{Q}(\omega, \sqrt[3]{2}) : \mathbb{Q}]$ is ≤ 6 and is divisible by both 2 and 3. Since By the Tower Law $[\mathcal{Q}(\omega, \sqrt{2}) : \mathcal{Q}]$ is ≤ 0 :
gcd $(2,3) = 1$, we get $[\mathcal{Q}(\omega, \sqrt[3]{2}) : \mathcal{Q}] = 6$.

(ii) Let p be an odd prime and

$$
f(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + \dots + X^2 + X + 1 \in \mathbb{Q}[X]
$$

=
$$
\prod_{r=1}^{p-1} (X - \zeta_p^r)
$$

where $\zeta_p = e^{2\pi i/p}$. Then f has [splitting field](#page-17-1)

$$
\mathbb{Q}(\zeta_p, \zeta_p^2, \dots, \zeta_p^{p-1}) = \mathbb{Q}(\zeta_p)
$$

So in this case the [splitting field](#page-17-1) is obtained by adjoining just one root.

(iii) Let $f(X) = X^3 - 2 \in \mathbb{F}_7[X]$ $f(X) = X^3 - 2 \in \mathbb{F}_7[X]$ $f(X) = X^3 - 2 \in \mathbb{F}_7[X]$. Then f is irreducible (since 2 isn't a cube modulo 7). Let $L = \mathbb{F}_7[X]/(f)$ $L = \mathbb{F}_7[X]/(f)$ $L = \mathbb{F}_7[X]/(f)$, so $L = \mathbb{F}_7(\alpha)$ with $\alpha^3 = 2$. Noting that $2^3 \equiv 1$ (mod 7), we get that $f(X) = (X - \alpha)(X - 2\alpha)(X - 4\alpha)$. So $L = \mathbb{F}_7(\alpha)$ is a [splitting field](#page-17-1) for f over \mathbb{F}_7 .

Start of

[lecture 7](https://notes.ggim.me/Galois#lecturelink.7)

Definition (algebraically closed field)**.** A [field](#page-3-1) K is *algebraically closed* if every nonconstant polynomial in $K[X]$ $K[X]$ has a root in K.

Equivalently, if every irreducible polynomial in $K[X]$ $K[X]$ is linear.

Example. C, by the fundamental theorem of algebra.

Lemma3.8. Let K be a [field.](#page-3-1) Then the following are equivalent:

- (i) K is [algebraically closed.](#page-21-0)
- (ii)If L/K is a [field extension](#page-3-3) and $\alpha \in L$ is [algebraic](#page-7-1) over K then $\alpha \in K$.
- (iii) If L/K is [algebraic](#page-8-1) then $L = K$.
- (iv) If L/K is [finite](#page-4-0) then $L = K$.

Proof. (ii) \implies (iii) \implies (iv) are all clear.

For (iv) \implies (i), let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ be an irreducible polynomial. Then $L = K[X]/(f)$ is a finite extension of [K](#page-4-0) with $[L:K] = \deg f$. By (iv) we have $L = K$. Therefore f is linear. \Box

Definition (algebraic closure). If L/K is [algebraic](#page-8-1) and L is [algebraically closed](#page-21-0) then we say that L is an *algebraic closure* of K.

Lemma 3.9. Let L/K be an [algebraic](#page-8-1) [extension](#page-3-5) such that every polynomial in $K[X]$ $K[X]$ splits into linear factors over L. Then L is [algebraically closed](#page-21-0) (and hence an [algebraic closure](#page-21-1) of K).

Proof. If L is not [algebraically closed](#page-21-0) then by [Lemma 3.8](#page-21-2) there exists M/L [algebraic](#page-8-1) with $[M: L] > 1$ $[M: L] > 1$ $[M: L] > 1$. Both M/L and L/K are [algebraic.](#page-8-1) So by [Proposition 1.14,](#page-11-2) M/K is [algebraic.](#page-8-1)

Pick any $\alpha \in M$. Let f be the [minimal polynomial](#page-7-0) for α over K. By our assumption, f splits over L, so $\alpha \in L$. So $M = L$. \Box Later we will show that every [field](#page-3-1) K has an [algebraic closure.](#page-21-1) Here are two easy cases:

Theorem 3.10. Suppose that (i) $K \subset \mathbb{C}$ or (ii) K is countable. Then K has an [algebraic closure.](#page-21-1)

Proof.

(i) If $K \subset \mathbb{C}$ then let

 $L = \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic over } K \}.$ $L = \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic over } K \}.$ $L = \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic over } K \}.$

Lis a [field](#page-3-1) by [Corollary 1.13,](#page-11-3) L/K is [algebraic.](#page-8-1) If $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ then write $f(X) =$ $\prod_{i=1}^{n}(X-\alpha_i)$ for some $\alpha_i \in \mathbb{C}$. The definition of L implies that all the $\alpha_i \in L$, i.e. f splits into linear factors over L . Then [Lemma 3.9](#page-21-3) gives that L is [algebraically](#page-21-0) [closed.](#page-21-0) Therefore L is the [algebraic closure](#page-21-1) of K .

(ii) If [K](#page-6-0) is countable then so $K[X]$. Enumerate the monic irreducible polynomials f_1, f_2, f_3, \ldots f_1, f_2, f_3, \ldots f_1, f_2, f_3, \ldots Let $L_0 = k$ and for each $i \geq 1$ let L_i be a [splitting field](#page-17-1) for f_i over L_{i-1} . Then

 $L_0 \subset L_1 \subset L_2 \subset \cdots$

Then $L = \bigcup_{n \geq 0} L_n$ is a [field,](#page-3-1) L/K is [algebraic,](#page-8-1) and every polynomial in $K[X]$ $K[X]$ splits over L. Then [Lemma 3.9](#page-21-3) implies that L is [algebraically closed.](#page-21-0) Therefore L is an [algebraic closure](#page-21-1) of K. \Box

Remark. Taking $K = \mathbb{Q}$ in the proof of (i), we see that $\overline{\mathbb{Q}} = \{\text{algebraic numbers}\}\subset \mathbb{Q}$ $\overline{\mathbb{Q}} = \{\text{algebraic numbers}\}\subset \mathbb{Q}$ $\overline{\mathbb{Q}} = \{\text{algebraic numbers}\}\subset \mathbb{Q}$ C is [algebraically closed.](#page-21-0)

4 Symmetric Polynomials

Suppose we wish to find the roots of a cubic polynomial $f(X) = X^3 + aX^2 + bX + c \in \mathbb{R}$ $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ $\mathbb{Q}[X]$. After substituting $X-\frac{a}{3}$ $\frac{a}{3}$ for X we may assume $a = 0$. Writing

$$
f(X) = (X - \alpha)(X - \beta)(X - \gamma)
$$

and comparing coefficients gives

$$
\alpha + \beta + \gamma = -a = 0
$$

$$
\alpha\beta + \beta\gamma + \gamma\alpha = b
$$

$$
\alpha\beta\gamma = -c
$$

Let $\omega = e^{2\pi i/3}$. Write

$$
\alpha = \frac{1}{3} \left[\underbrace{(\alpha + \beta + \gamma)}_{=0} + \underbrace{(\alpha + \omega\beta + \omega^2\gamma)}_{=u} + \underbrace{(\alpha + \omega^2\beta + \omega\gamma)}_{=v} \right]
$$

Then $u^3 + v^3$ and uv are unchanged under permuting α, β, γ . After some calculation we find (remembering $a = 0$) that

$$
u^3 + v^3 = -27c \qquad \text{and} \qquad uv = -3b
$$

Therefore u^3 and v^3 are the roots of

$$
X^2 + 27cX - 27b^3 = 0
$$

Solving this quadratic and taking cube roots gives a formula for the roots of a cube, usually called Cardano's formula.

Let S_n be the symmetric group on n letters.

Definition (symmetric polynomial)**.** Let R be a ring. A polynomial $f \in R[X_1, \ldots, X_n]$ is *symmetric* if

$$
f(X_{\sigma(1)},\ldots,X_{\sigma(n)})=f(X_1,\ldots,X_n) \qquad \forall \sigma \in S_n
$$

If f and g are [symmetric](#page-23-2) then so are $f + g$ and fg. Therefore the symmetric [polynomials](#page-23-2) form a subring of $R[X_1, \ldots, X_n]$.

Definition (elementary symmetric functions)**.** The *elementary symmetric functions* are the polynomial[s](#page-23-3) s_1, \ldots, s_n s_1, \ldots, s_n s_1, \ldots, s_n in $\mathbb{Z}[X_1, \ldots, X_n]$ such that

$$
\prod_{i=1}^{n} (T + X_i) = T^n + s_1 T^{n-1} + \dots + s_{n-1} T + s_n
$$

Example. When $n = 3$,

$$
s_1 = X_1 + X_2 + X_3
$$

\n
$$
s_2 = X_1X_2 + X_1X_3 + X_2X_3
$$

\n
$$
s_3 = X_1X_2X_3
$$

In general,

$$
s_r = \sum_{1 \le i_1 < \dots < i_r \le n} X_{i_1} X_{i_2} \dotsm X_{i_r}
$$

Theorem 4.1 (Symmetric Function Theorem)**.**

- (i) Every [symmetric polynomial](#page-23-2) over R can be expressed as a polynomial in the [elementary symmetric functions,](#page-23-4) with coefficients in R.
- (ii) There are no non-trivial relation[s](#page-23-3) between the s_i .

Remark. Consider the ring homomorphism

$$
R[\tau_1,\ldots,\tau_n] \stackrel{\theta}{\to} R[X_1,\ldots,X_n]
$$

$$
\tau_i \mapsto s_i
$$

Then part (i) of [Symmetric Function Theorem](#page-24-1) says that

 $\text{Im}(\theta) = \{\text{symmetric polynomials in } R[X_1, \ldots, X_n]\},\$ $\text{Im}(\theta) = \{\text{symmetric polynomials in } R[X_1, \ldots, X_n]\},\$ $\text{Im}(\theta) = \{\text{symmetric polynomials in } R[X_1, \ldots, X_n]\},\$

and part (ii) says θ is injective.

Start of

[lecture 8](https://notes.ggim.me/Galois#lecturelink.8) **Remark.** We can write any $f \in R[X_1, \ldots, X_n]$ as $f = \sum_d f_d$ where f_d is *homogeneous* of degree d (i.e. each monomial has total degree d).

> Clearly f [symmetric](#page-23-1) implies all f_d are [symmetric.](#page-23-1) So for the proof of [Symmetric](#page-24-1) [Function Theorem](#page-24-1)(i),it suffices to consider $f \in R[X_1, \ldots, X_n]$ which is [symmetric](#page-23-1) and homogeneous of degree d.

Definition (lexicocraphic ordering)**.** Define the *lexicographic ordering* of monomials such that

$$
X_1^{i_1} X_2^{i_2} \cdots X_n^{i_n} > X_1^{k_1} X^{j_2} \cdots X_n^{j_n}
$$

if $i_1 = j_1, i_2 = j_2, \ldots, i_{r-1} = j_{r-1}, i_r > j_r$ for some $1 \le r \le n$.

This is a total ordering.

Proof of [Symmetric Function Theorem.](#page-24-1)

(i) By previous remark, we may split f into a sum of homogeneous polynomials, and just prove that each term in the sum can be written as a sum of [elementary sym](#page-23-4)[metric function](#page-23-4).

Let $X_1^{i_1} X_2^{i_2} \cdots X_n^{i_n}$ be the largest monomial (with respect to [lexicographic ordering\)](#page-25-0) to appear in f with non-zero coefficient (c say). Since $X^{i_1}_{\sigma(1)}X^{i_2}_{\sigma(2)}\cdots X^{i_n}_{\sigma(n)}$ $\int_{\sigma(n)}^{i_n}$ also appears in f for all $\sigma \in S_n$, we must have $i_1 \geq i_2 \geq i_3 \geq \cdots \stackrel{\cdot}{i_n}$.

Write

$$
X_1^{i_1} X_2^{i_2} \cdots X_n^{i_n} = X_1^{i_1 - i_2} (X_1 X_2)^{i_2 - i_3} \cdots (X_1 X_2 \cdots X_n)^{i_{n-1} - i_n}
$$

Let $g = s_1^{i_1-i_2} s_2^{i_2-i_3} \cdots s_n^{i_n}$ $g = s_1^{i_1-i_2} s_2^{i_2-i_3} \cdots s_n^{i_n}$ $g = s_1^{i_1-i_2} s_2^{i_2-i_3} \cdots s_n^{i_n}$. Then f and g are both [homogeneous](#page-24-2) of degree d and have the same [largest](#page-25-0)monomial. So $f - cg$ is either 0, or it is a [symmetric](#page-23-2) [polynomial](#page-23-2)of degree d, whose leading monomial is [smaller](#page-25-0) than that of f .

Since there are only finitely many monomials of degree d in $R[X_1, \ldots, X_n]$, the process stops after finitely many steps. Therefore we can write f as a polynomial in s_1, \ldots, s_n s_1, \ldots, s_n s_1, \ldots, s_n s_1, \ldots, s_n .

(ii) Write $s_{r,n}$ $s_{r,n}$ instead of s_r to indicate the number of variables involved. Suppose $G \in R[Y_1, \ldots, Y_n]$ $G \in R[Y_1, \ldots, Y_n]$ $G \in R[Y_1, \ldots, Y_n]$ with $G(s_{1,n}, s_{2,n}, \ldots, s_{n,n}) = 0$ $G(s_{1,n}, s_{2,n}, \ldots, s_{n,n}) = 0$ $G(s_{1,n}, s_{2,n}, \ldots, s_{n,n}) = 0$. We must prove that $G = 0$. The proof is by induction on *n*. The case $n = 1$ is clear.

Write $G = Y_n^k H$ with $Y_n \nmid H, k \geq 0$. Since $s_{n,n} = X_1 X_2 \cdots X_n$ $s_{n,n} = X_1 X_2 \cdots X_n$, it is not a zero divisor in $R[X_1, \ldots, X_n]$, so we have

$$
H(s_{1,n},s_{2,n},\ldots,s_{n,n})=0
$$

So we may assume that G, if non-zero, is not divisible by Y_n . Replacing X_n by 0 gives

$$
s_{r,n}(X_1, \ldots, X_{n-1}, 0) = \begin{cases} s_{r,n-1}(X_1, \ldots, X_{n-1}) & r < n \\ 0 & r = n \end{cases}
$$

Therefore

$$
G(s_{1,n-1}, s_{2,n-1}, \ldots, s_{n-1,n-1}, 0) = 0
$$

By induction hypothesis, $G(Y_1, \ldots, Y_{n-1}, 0) = 0$, hence $Y_n | G$. So by the above G \Box must be zero.

Example 4.2. Let $f = \sum_{i \neq j} X_i^2 X_j$. The leading term (in [lexicographic ordering\)](#page-25-0) is $X_1^2 X_2 = X_1(X_1 X_2)$. Calculate:

$$
s_1 s_2 = \sum_i \sum_{j < k} X_i X_j X_k
$$
\n
$$
= \sum_{\substack{i \neq j}} X_i^2 X_j + 3 \sum_{i < j < k} X_i X_j X_k
$$
\n
$$
= f
$$

So $f = s_1s_2 - 3s_3$ $f = s_1s_2 - 3s_3$ $f = s_1s_2 - 3s_3$.

Example 4.3. Let $f(X) = \prod_{i=1}^{n} (X - \alpha_i)$ be a monis polynomial with roots $\alpha_1, \ldots, \alpha_n$. The *discriminant of* f is

$$
\operatorname{Disc}(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2
$$

By the [Symmetric Function Theorem,](#page-24-1) we can write $Disc(f)$ $Disc(f)$ as a polynomial in the coefficients of f .

 $n = 2, f(X) = X^2 + bX + c = (X - \alpha_1)(X - \alpha_2).$ Then

$$
Disc(f) = (\alpha_1 - \alpha_2)^2
$$

= $(\alpha_1 + \alpha_2)^2 - 4\alpha_1\alpha_2$
= $b^2 - 4ac$

It is clear from the definition that

 $Disc(f) = 0 \iff f$ $Disc(f) = 0 \iff f$ has repeated roots

5 Normal and separable extensions

Definition (normal extension)**.** An [extension](#page-3-5) [L/K](#page-3-4) is *normal* if itis [algebraic](#page-8-1) and the [minimal polynomial](#page-7-0) of every $\alpha \in L$ splits into linear factors over L.

Equivalently if $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ is irreducible and has a root in L, then it splits into linear factors over L. (slogan: "one out – all out").

Theorem 5.1 (Splitting fields are normal). Let $[L:K] < \infty$ $[L:K] < \infty$ $[L:K] < \infty$. Then

 L/K is [normal](#page-27-3) $\iff L$ is a [splitting field](#page-17-1) for some $f \in K[X]$ $f \in K[X]$ $f \in K[X]$

Proof.

 \Rightarrow Write $L = K(\alpha_1, \ldots, \alpha_n)$. Let f_i be the [minimal polynomial](#page-7-0) of α_i over K. Then

 L/K [normal](#page-27-3) $\implies f_i$ splits into linear factors over L \implies L is a [splitting field](#page-17-1) for $\prod f_i$ i

 \Rightarrow Let L be the [splitting field](#page-17-1) of $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ over K. Let $\alpha \in L$ have [minimal polynomial](#page-7-0) gover K. Let M/L be a [splitting field](#page-17-1) for g. We must show that whenever β is a rootof g then in fact $\beta \in L$ $\beta \in L$. Then $L = L(\alpha)$ is a [splitting field](#page-17-1) for f over $K(\alpha)$ $K(\alpha)$, and $L(\beta)$ $L(\beta)$ is a [splitting field](#page-17-1) for f over $K(\beta)$ $K(\beta)$. α and β have the same [minimal polynomial](#page-7-0) g over [K](#page-6-0), so $K(\alpha)$ and $K(\beta)$ are K[-isomorphic.](#page-15-1) By [Uniqueness of splitting fields,](#page-18-0) $L(\alpha)$ $L(\alpha)$ and $L(\beta)$ are K[-isomorphic.](#page-15-1) Therefore $[L:K] = [L(\beta):K]$ $[L:K] = [L(\beta):K]$ $[L:K] = [L(\beta):K]$. So by [Tower Law,](#page-5-2) $[L(\beta):L]=1$ $[L(\beta):L]=1$ $[L(\beta):L]=1$, so $L(\beta)=L$, so $\beta\in L$. \Box

Start of

[lecture 9](https://notes.ggim.me/Galois#lecturelink.9)

5.1 Separability

Over $\mathbb R$ or $\mathbb C$ we know from calculus that a polynomial f has a repeated root α if and only if

$$
f(\alpha) = f'(\alpha) = 0
$$

To work over arbitrary [fields](#page-3-1) we proceed purely algebraically (no calculus!).

Note that we call a root *simple* if it is not a repeated root.

Definition (Formal derivative). The *formal derivative* of $f = \sum_{i=0}^{d} c_i X^i \in K[X]$ $f = \sum_{i=0}^{d} c_i X^i \in K[X]$ $f = \sum_{i=0}^{d} c_i X^i \in K[X]$ is

$$
f' = \sum_{i=1}^d ic_i X^{i-1}.
$$

Exercise: Check with this definition that

$$
\begin{cases}\n(f+g)' = f' + g' \\
(fg)' = fg' + f'g\n\end{cases}
$$

Lemma5.2. Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ and $\alpha \in K$ a root of f. Then α is a [simple](#page-27-4) root if and only if $f'(\alpha) \neq 0$ $f'(\alpha) \neq 0$.

Proof. Write $f(X) = (X - \alpha)g(X)$ for some $g \in K[X]$ $g \in K[X]$ $g \in K[X]$. Then

$$
\alpha \text{ is a simple root of } f \iff X - \alpha \text{ is not a factor of } g
$$

$$
\iff g(\alpha) \neq 0
$$

But $f'(X) = (X - \alpha)g'(X) + g(X)$, so $f'(\alpha) = g(\alpha)$.

By the GCD of polynomials $f, g \in K[X]$ $f, g \in K[X]$ $f, g \in K[X]$ not both zero, we mean the unique monic polynomial gcd (f, g) which generates the ideal $(f, g) \subset K[X]$ $(f, g) \subset K[X]$ $(f, g) \subset K[X]$.

This is the unique monic polynomial which divides both f and g and can be written as $af + bg$ for some $a, b \in K[X]$ $a, b \in K[X]$ $a, b \in K[X]$.

We can compute $gcd(f, g)$, together with a, b, using Euclid's algorithm.

Lemma 5.3. Let $f, g \in K[X]$ $f, g \in K[X]$ $f, g \in K[X]$ and let L/K be any [field extension.](#page-3-3) Then $gcd(f, g)$ is the same computed in $K[X]$ $K[X]$ $K[X]$ $K[X]$ and in $L[X]$.

Proof. Running Euclid's algorithm on $f, g \in K[X]$ $f, g \in K[X]$ $f, g \in K[X]$ gives the same answer whether we work in $K[X]$ $K[X]$ $K[X]$ $K[X]$ or $L[X]$. \Box

 \Box

Definition (Separable). An irreducible polynomial $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ is *separable* if it splits into distinct linear factors ina [splitting field.](#page-17-1)

The convention in this course is that we use the same definition for any $0 \neq f \in$ [K](#page-6-0)[X]. Anything which is not [separable](#page-29-0) is called *inseparable*.

Lemma 5.4. Let $0 \neq f \in K[X]$ $0 \neq f \in K[X]$ $0 \neq f \in K[X]$. Then

f is [separable](#page-29-0) $\iff \gcd(f, f') = 1$.

*Proof.*Let L be a [splitting field](#page-17-1) of f . Then

f [separable](#page-29-0) \iff f and f' have no common roots in L \Leftrightarrow gcd $(f, f') = 1$ in $L[X]$ $L[X]$ $L[X]$ \Leftrightarrow gcd $(f, f') = 1$ in $K[X]$ $K[X]$

 \Box

Theorem 5.5. Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ irreducible. Then f is [separable](#page-29-0) unless char (K) = $p > 0$ and $f(X) = g(X^p)$ for some $g \in K[X]$ $g \in K[X]$ $g \in K[X]$.

Proof. Assume f is monic. Since f is irreducible, $gcd(f, f') = 1$ or f. If $f' \neq 0$ $f' \neq 0$ then since deg $f' < \deg f$ we have $gcd(f, f') \neq f$, so $gcd(f, f') = 1$, and f is [separable.](#page-29-0) Now suppose that $f' = 0$ $f' = 0$. If $f = \sum_{i=0}^{d} c_i X^i$ then $f' = \sum_{i=1}^{d} i c_i X^{i-1}$. So $f' = 0 \implies i c_i =$ $0 \ \forall 1 \leq i \leq d.$

If [char\(](#page-3-2)K) = 0, then this implies that $c_i = 0$ for all $1 \leq i \leq d$, so f is constant (hence not irreducible). If $char(K) = p > 0$ $char(K) = p > 0$ we still get $c_i = 0$ for all i with $p \nmid i$. Therefore $f(X) = g(X^p)$ for some $g \in K[X]$ $g \in K[X]$ $g \in K[X]$. \Box

Definition(Separable element / extension). Let L/K be a [field extension.](#page-3-3) We define:

- (i) $\alpha \in L$ is *separable* over K if it is [algebraic](#page-8-1) over K and its [minimal polynomial](#page-7-0) if [separable.](#page-29-0)
- (ii) L/K is *separable* if every $\alpha \in L$ is [separable](#page-29-1) over K (in particular L/K is [algebraic\)](#page-8-1).

Theorem 5.6 (Theorem of the Primitive Element)**.** If [L/K](#page-3-4) is [finite](#page-4-0) and [separable](#page-29-2) then L/K is [simple](#page-7-2) (that is, $L = K(\theta)$ $L = K(\theta)$ $L = K(\theta)$ for some $\theta \in L$).

Proof. Write $L = L(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_i \in L$. We must show that $L = K(\theta)$ $L = K(\theta)$ $L = K(\theta)$ for some $\theta \in L$. It suffices to prove the case $n = 2$, since the general case follows by induction on n .

Write $L = K(\alpha, \beta)$, and let f and g be the [minimal polynomials](#page-7-0) of α and β over K. Let Mbe a [splitting field](#page-17-1) for fg over L. Write

$$
f(X) = \prod_{i=1}^{r} (X - \alpha_i), \qquad \alpha_i \in M, \alpha = \alpha_1
$$

$$
g(X) = \prod_{i=1}^{s} (X - \beta_i), \qquad \beta_i \in M, \beta = \beta_1
$$

Now L/K [separable](#page-29-1) implies β separable over K, which implies β_1, \ldots, β_s are distinct. We pick some $c \in K$ $c \in K$ and let $\theta = \alpha + c\beta$. Let $F(X) = f(\theta - cX) \in K(\theta)[X]$. Then $F(\beta) = f(\theta - c\beta) = f(\alpha) = 0$, and $g(\beta) = 0$.

If β_2, \ldots, β_s are not roots of F then

$$
\gcd(F, g) = X - \beta \text{ in } M[X] \implies \gcd(F, g) = X - \beta \text{ in } K(\theta)[X]
$$

$$
\implies \beta \in K(\theta)
$$

But then $\alpha = \theta - c\beta \in K(\theta)$ $\alpha = \theta - c\beta \in K(\theta)$ $\alpha = \theta - c\beta \in K(\theta)$ so $K(\alpha, \beta) \subset K(\theta)$. But clearly $K(\theta) \subset K(\alpha, \beta)$, and hence $L = K(\alpha, \beta) = K(\theta).$ $L = K(\alpha, \beta) = K(\theta).$ $L = K(\alpha, \beta) = K(\theta).$

We are done unless $F(\beta_i) = 0$ $F(\beta_i) = 0$ for some $2 \leq j \leq s$. In this case, we have $f(\theta - c\beta_j) = 0$ for some $2 \leq j \leq s$, and so $\alpha + c\beta = \alpha_i + c\beta_j$ for some $1 \leq i \leq r$, $2 \leq j \leq s$. If $|K| = \infty$ then since $\beta \notin {\beta_2, \ldots, \beta_s}$ we can pick $c \in K$ such that this never happens. If $|K| < \infty$, then $|L| < \infty$ $|L| < \infty$ $|L| < \infty$ and by [Proposition 1.3,](#page-5-3) L^* is cyclic and generated by θ (say). Then $L = K(\theta)$ $L = K(\theta)$ $L = K(\theta)$. \Box

Start of

[lecture 10](https://notes.ggim.me/Galois#lecturelink.10) **Remark.** [Theorem 5.5](#page-29-3) and [Theorem 5.6](#page-30-1) show that if $[K : \mathbb{Q}] < \infty$ $[K : \mathbb{Q}] < \infty$ $[K : \mathbb{Q}] < \infty$ then $K = \mathbb{Q}(\alpha)$ for some $\alpha \in K$.

Oneaim for today: Show that if L/K is a [field extension](#page-3-3) and $\alpha_1, \ldots, \alpha_n \in L$, then

 $\alpha_1, \ldots, \alpha_n$ are [separable](#page-29-2) over $K \implies K(\alpha_1, \ldots, \alpha_n)/K$ $K \implies K(\alpha_1, \ldots, \alpha_n)/K$ is separable

Notation. Let L/K and M/K be [field extensions.](#page-3-3) We write

 $\text{Hom}_k(L, M) = \{K\text{-embedding } L \hookrightarrow M\}$ $\text{Hom}_k(L, M) = \{K\text{-embedding } L \hookrightarrow M\}$ $\text{Hom}_k(L, M) = \{K\text{-embedding } L \hookrightarrow M\}$

Lemma 5.7. Let $[L: K] < \infty$ $[L: K] < \infty$ $[L: K] < \infty$. Suppose $L = K(\alpha)$ and f is the [minimal polynomial](#page-7-0) of α over K. Let M/K be any [field extension.](#page-3-3) Then

$$
\# \operatorname{Hom}_K(L, M) \leq [L : K],
$$

with equality if and only if f splits into linear factors over M .

Proof. By [Theorem 3.2,](#page-15-2)

$$
#\operatorname{Hom}_{K}(L,M) = #{\text{roots of } f \text{ in } M}
$$

$$
\leq \deg f = [L:K]
$$

with equality if and only if f splits into discinct linear factors over M .

 \Box

Theorem 5.8. Let $[L: K] < \infty$ $[L: K] < \infty$ $[L: K] < \infty$. Write $L = K(\alpha_1, \ldots, \alpha_n)$ and let f_i be the [minimal polynomial](#page-7-0) of α_i over K. Let M/K be any [field extension.](#page-3-3) Then

$$
\# \operatorname{Hom}_K(L, M) \leq [L : K]
$$

with equality if and only if each f_i splits into distinct linear factors over M .

Note that [Lemma 5.7](#page-31-1) is the case $n = 1$.

Obvious variant of [Theorem 5.8:](#page-31-2) Let $\sigma: K \hookrightarrow M$ be an embedding. Then

#{ σ [-homomorphisms](#page-16-0) $L \to M$ } $\leq [L:K]$ $\leq [L:K]$ $\leq [L:K]$

with equality if and only if each $\sigma(f_i)$ splits into distinct linear factors over M.

We'll use this variant in the induction argument.

Proof of [Theorem 5.8.](#page-31-2) By induction on n. The case $n = 1$ is proved in [Lemma 5.7.](#page-31-1) So suppose $n > 1$. Let $K_1 = K(\alpha_1)$ $K_1 = K(\alpha_1)$. Then [Lemma 5.7](#page-31-1) implies

$$
\#\operatorname{Hom}_K(K,M) \le [K_1:K] \tag{1}
$$

Let $\sigma \in \text{Hom}_K(K_1, M)$ $\sigma \in \text{Hom}_K(K_1, M)$ $\sigma \in \text{Hom}_K(K_1, M)$. By the induction hypothesis,

 $\#\{\sigma\text{-homomorphisms } L = K_1(\alpha_2,\ldots,\alpha_n) \to M\} \leq [L:K_1]$ $\#\{\sigma\text{-homomorphisms } L = K_1(\alpha_2,\ldots,\alpha_n) \to M\} \leq [L:K_1]$ $\#\{\sigma\text{-homomorphisms } L = K_1(\alpha_2,\ldots,\alpha_n) \to M\} \leq [L:K_1]$ $\#\{\sigma\text{-homomorphisms } L = K_1(\alpha_2,\ldots,\alpha_n) \to M\} \leq [L:K_1]$ $\#\{\sigma\text{-homomorphisms } L = K_1(\alpha_2,\ldots,\alpha_n) \to M\} \leq [L:K_1]$ (2)

Then [Tower Law](#page-5-2) with [\(1\)](#page-31-3) and [\(2\)](#page-32-0) gives

$$
\# \operatorname{Hom}_{K}(L, M) \leq [L : K_{1}][K_{1} : K] = [L : K]
$$

If equality holds then equality holds in both [\(1\)](#page-31-3) and [\(2\)](#page-32-0).

Equality in [\(1\)](#page-31-3) implies f_1 splits into distinct linear factors over M. Reordering the α_i gives the same conclusion for all the f_i . Conversely, if each f_i splits into distinct linear factors over M then [Lemma 5.7](#page-31-1) gives equality in [\(1\)](#page-31-3).

For $2 \le i \le n$, the [minimal polynomial](#page-7-0) of α_i over K_1 divides f_i and so splits into distinct linear factors over M . Then the induction hypothesis implies that equality holds in (2) . Since we now have equality in both [\(1\)](#page-31-3) and [\(2\)](#page-32-0), it follows that $\#\text{Hom}_K(L, M) = [L :$ $\#\text{Hom}_K(L, M) = [L :$ $\#\text{Hom}_K(L, M) = [L :$ \Box K .

Corollary 5.9. Let $[L: K] < \infty$ $[L: K] < \infty$ $[L: K] < \infty$. Write $L = K(\alpha_1, \ldots, \alpha_n)$ and let f_i be the [minimal polynomial](#page-7-0) of α_i over K. Let M/K be any [field extension](#page-3-3) in which $\prod f_i$ splits as a product of linear factors (for example $M = \overline{K}$). Then the following are equivalent:

- (i) L/K is [separable.](#page-29-2)
- (ii) Each α_i is [separable](#page-29-1) over K.
- (iii) Each f_i splits into distinct linear factors over M .
- (iv) $\#\text{Hom}_K(L,M) = [L:K].$ $\#\text{Hom}_K(L,M) = [L:K].$ $\#\text{Hom}_K(L,M) = [L:K].$

Proof. (i) \implies (ii) \implies (iii) by definition.

(iii) \implies (iv) see [Theorem 5.8.](#page-31-2)

(iv) \implies (i) Let $\beta \in L$. Applying [Lemma 5.7](#page-31-1) to $L = K(\alpha_1, \ldots, \alpha_n, \beta)$ shows that β is separable over K. \Box

Remark. (ii) \implies (i) is the result promised at the start of the lecture.

(i) \iff (iv) is a useful characterisation of [separable](#page-29-2) [extensions.](#page-3-5)

Example 5.10. Let K be any [field.](#page-3-1) The polynomial $T^n - Y \in K[Y, T]$ $T^n - Y \in K[Y, T]$ $T^n - Y \in K[Y, T]$ is irreducible (it suffices to consider factorisations of the form $f(T)(g(T)+Yh(T))$ where $f, g, h \in$ $K[T]$ $K[T]$).

Since $K[Y]$ $K[Y]$ is a UFD with field of fractions $K(Y)$, it follows by Gauss's Lemma that

$$
T^n - Y \in K(Y)[T]
$$
\n^(*)

is irreducible. The [field extension](#page-3-3) $K(X)/K(X^n)$ $K(X)/K(X^n)$ $K(X)/K(X^n)$ $K(X)/K(X^n)$ is generated by X which is a root of $T^n - X^n \in K(X^n)[T]$ $T^n - X^n \in K(X^n)[T]$ $T^n - X^n \in K(X^n)[T]$. Putting $Y = X^n$ in [\(](#page-33-1)*) shows this is irreducible. Therefore $[K(X) : K(X^n)] = n$ $[K(X) : K(X^n)] = n$. Now take $K = \mathbb{F}_p$ and $n = p$ (p a prime). We claim that $\mathbb{F}_p(X)/\mathbb{F}_p(X^p)$ $\mathbb{F}_p(X)/\mathbb{F}_p(X^p)$ $\mathbb{F}_p(X)/\mathbb{F}_p(X^p)$ is an [inseparable](#page-29-2) [extension](#page-3-5) of [degree](#page-4-0) p. Indeed, the [minimal](#page-7-0) [polynomial](#page-7-0) of [X](#page-6-0)over $\mathbb{F}_p(X^p)$ is $f(T) = T^p - X^p \in \mathbb{F}_p(X^p)[T]$, which is [inseparable](#page-29-0) since $f(T) = (T - X)^p$ (compare to [Proposition 1.4\)](#page-5-4).

Start of

[lecture 11](https://notes.ggim.me/Galois#lecturelink.11)

6 Galois Extensions

Definition(automorphism). An *automorphism* of a [field](#page-3-1) L is a bijective homomorphism $\sigma: L \to L$. We write $Aut(L)$ $Aut(L)$ for the group of automorphisms of L under composition, i.e.

 $(\sigma \tau)(x) = \sigma(\tau(x)).$

Exercise: Check inverses (i.e. check that σ^{-1} is a homormorphism).

Definition.Let L/K be a [field extension.](#page-3-3) A K-automorphism of L is an [au](#page-34-2)[tomorphism](#page-34-2) $\sigma \in Aut(L)$ $\sigma \in Aut(L)$ $\sigma \in Aut(L)$ whose restriction to K is the identity map. The Kautomorphisms of L form a subgroup $Aut(L/K) \subset Aut(L)$ $Aut(L/K) \subset Aut(L)$ $Aut(L/K) \subset Aut(L)$.

Remark.

- (i) [Aut\(](#page-34-1)Q) and Aut(\mathbb{F}_p) are both trivial. Therefore Aut(L) [= Aut\(](#page-34-3) L/K) where K is the [prime subfield](#page-3-7) of L .
- (ii) If $[L: K] < \infty$ $[L: K] < \infty$ $[L: K] < \infty$ then any K[-embedding](#page-15-1) $L \to L$ is surjective (by rank-nullity), i.e.

$$
\operatorname{Hom}_k(L,L) = \operatorname{Aut}(L/K)
$$

Lemma6.1. Let L/K be a [finite](#page-4-0) [extension.](#page-3-5) Then

$$
\#\operatorname{Aut}(L/K) \leq [L:K]
$$

Proof. Take $M = L$ in [Theorem 5.8.](#page-31-2)

Definition. If $S \subset Aut(L)$ $S \subset Aut(L)$ $S \subset Aut(L)$ is any subset we define the *fixed field* of S to be

$$
L^{S} = \{ x \in L \mid \sigma(x) = x \,\,\forall \sigma \in S \}
$$

This is a subfield of L.

Definition. A [field extension](#page-3-3) [L/K](#page-3-4) is *Galois* if itis [algebraic](#page-8-1) and

 $K = L^{\text{Aut}(L/K)}$ $K = L^{\text{Aut}(L/K)}$ $K = L^{\text{Aut}(L/K)}$

 \Box

Example.

(i) $Aut(\mathbb{C}/\mathbb{R}) = \{1, \tau\}$ $Aut(\mathbb{C}/\mathbb{R}) = \{1, \tau\}$ $Aut(\mathbb{C}/\mathbb{R}) = \{1, \tau\}$ $Aut(\mathbb{C}/\mathbb{R}) = \{1, \tau\}$ where τ is complex conjugation. If $z \in \mathbb{C}$, then

 $z \in \mathbb{R} \iff \tau(z) = z$

therefore \mathbb{C}/\mathbb{R} \mathbb{C}/\mathbb{R} \mathbb{C}/\mathbb{R} is [Galois.](#page-34-5)

(ii) Let $L = \mathbb{Q}(\sqrt{2})$. $f(X) = X^2 - 2$.

$$
Aut(L/\mathbb{Q}) \leftrightarrow \{\text{roots of } f \text{ in } L\}
$$

Therefore $\text{Aut}(L/\mathbb{Q}) = \{1, \tau\}$ $\text{Aut}(L/\mathbb{Q}) = \{1, \tau\}$ $\text{Aut}(L/\mathbb{Q}) = \{1, \tau\}$ where $\tau : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ $(2), a + b$ $(2), a + b$ $(2), a + b$ √ $2 \mapsto a - b$ √ 2, $a, b \in \mathbb{Q}$.

$$
L^{\tau} = \{a + b\sqrt{2} \mid a + b\sqrt{2} = a - b\sqrt{2}\}\
$$

= $\{a + b\sqrt{2} \mid b = 0\}$
= \mathbb{Q}

Therefore L/\mathbb{Q} L/\mathbb{Q} is [Galois.](#page-34-5)

(iii) Let $L = \mathbb{Q}(\sqrt[3]{2}), f(X) = X^3 - 2.$ Then

$$
Aut(L/\mathbb{Q}) \leftrightarrow \{\text{roots of } f \text{ in } L\}
$$

Since $L \subset \mathbb{R}$ we see that $\#\operatorname{Aut}(L/\mathbb{Q}) = 1$ $\#\operatorname{Aut}(L/\mathbb{Q}) = 1$ $\#\operatorname{Aut}(L/\mathbb{Q}) = 1$. Therefore L/\mathbb{Q} is not [Galois.](#page-34-5)

(iv)Let K/\mathbb{F}_p K/\mathbb{F}_p be a [finite](#page-4-0) [extension](#page-3-5) $(\implies |K| < \infty)$. Let $\phi: K \to K$, $x \mapsto x^p$. By [Proposition 1.4,](#page-5-4) $\phi \in \mathrm{Aut}(K/\mathbb{F}_p)$ $\phi \in \mathrm{Aut}(K/\mathbb{F}_p)$ $\phi \in \mathrm{Aut}(K/\mathbb{F}_p)$. Then

$$
K^{\phi} = \{ x \in K \mid \phi(x) = x \}
$$

= {roots of $X^{p} - X$ in $K \}$
 \supset \mathbb{F}_{p}

(with equality in the \supset by [Lemma 1.1\)](#page-3-6). Therefore K/\mathbb{F}_p K/\mathbb{F}_p is [Galois.](#page-34-5)
Theorem 6.2 (Classification of finite Galois extensions). Let $[L: K] < \infty$ $[L: K] < \infty$ $[L: K] < \infty$ and $G = Aut(L/K)$ $G = Aut(L/K)$ $G = Aut(L/K)$ $G = Aut(L/K)$. Then the following are equivalent:

- (i) L/K is [Galois,](#page-34-1) i.e. $K = L^G$ $K = L^G$ $K = L^G$.
- (ii) L/K is [normal](#page-27-0) and [separable.](#page-29-0)
- (iii) L is the [splitting field](#page-17-0) of a [separable](#page-29-1) over K .
- (iv) $\#G = [L : K]$ $\#G = [L : K]$ $\#G = [L : K]$ (i.e. equality holds in [Lemma 6.1\)](#page-34-3).

Proof. (i) \implies (ii) Let $\alpha \in L$ and $\{\sigma(\alpha) : \sigma \in G\} = \{\alpha_1, \ldots, \alpha_m\}$ with $\alpha_1, \ldots, \alpha_m$ distinct. Let $f(X) = \prod_{i=1}^{m} (X - \alpha_i)$ $f(X) = \prod_{i=1}^{m} (X - \alpha_i)$ $f(X) = \prod_{i=1}^{m} (X - \alpha_i)$. We let $\sigma \in G$ act on $L[X]$ via

$$
\sigma\left(\sum c_i X^i\right) = \sum \sigma(c_i) X^i
$$

Since G permutes the α_i we have $\sigma f = f \,\forall \sigma \in G$. L/K [Galois](#page-34-1) implies $f \in K[X]$ $f \in K[X]$ $f \in K[X]$. Let g be the [minimal polynomial](#page-7-0) of α over K. Since $f(\alpha) = 0$ we have $g \mid f$. Since $g(\sigma(\alpha)) = \sigma(g(\alpha)) = 0 \,\forall \sigma \in G$, every root of f is a root of q. By construction f is [separable](#page-29-1) and monic, so $f = q$. Therefore the [minimal polynomial](#page-7-0) of α over K splits into distinct linear factors over L. Since $\alpha \in L$ is arbitrary, this shows that L/K is [normal](#page-27-0) and [separable.](#page-29-0)

- (ii) \implies (iii) By [Theorem 5.8,](#page-31-0) L is the [splitting field](#page-17-0) of some $f \in K[X]$ $f \in K[X]$ $f \in K[X]$. Write $f = \prod_{i=1}^m f_i^{e_i}$ where ther $f_i \in K[X]$ $f_i \in K[X]$ $f_i \in K[X]$ are distinct and irreducible, and $e_i \geq 1$. Since L/K is [separable,](#page-29-0) each f_i is [separable.](#page-29-1) Moreover, $gcd(f_i, f_J) = 1$ in $K[X]$ $K[X]$ $K[X]$ $K[X]$ so by [Lemma 5.3,](#page-28-0) $gcd(f_i, f_j) = 1$ in $L[X]$. Therefore $g = \prod_{i=1}^{m} f_i$ is [separable,](#page-29-1) and L is a [splitting field](#page-17-0) for g over K.
- (iii) \implies (iv) Let L be the [splitting field](#page-17-0) of a [separable](#page-29-1) $f \in K[X]$ $f \in K[X]$ $f \in K[X]$. Then $L =$ $K(\alpha_1,\ldots,\alpha_n)$ where α_1,\ldots,α_n are the roots of f. The [minimal](#page-7-0) [polynomial](#page-7-0) f_i of each α_i divides f and so splits into distinct linear factors over L. Taking $M = L$ in [Theorem 5.8](#page-31-0) gives $\#\text{Aut}(L/K) =$ $\#\text{Aut}(L/K) =$ $\#\text{Aut}(L/K) =$ $[L:K].$ $[L:K].$ $[L:K].$

(iv)
$$
\implies
$$
 (i) $G \subset \text{Aut}(L/L^G) \subset \text{Aut}(L/K) = G$. Therefore $G = \text{Aut}(L/L^G)$.

$$
\implies [L:K] \stackrel{\text{by (iv)}}{=} \#G = \# \text{Aut}(L/L^G) \stackrel{\text{Lemma 6.1}}{\leq} [L:L^G]
$$

So by [Tower Law,](#page-5-0)

$$
[L \div L^G][L^G : K] \le [L \div L^G]
$$
 so $L^G = K$.

Definition(Galois group). If L/K is a [Galois](#page-34-1) [extension](#page-3-1) then we write $Gal(L/K)$ $Gal(L/K)$ for $Aut(L/K)$ $Aut(L/K)$ $Aut(L/K)$ (we call this the *Galois group of* L *over* K).

Start of

[lecture 12](https://notes.ggim.me/Galois#lecturelink.12) **Remark 6.3.** We saw in the proof of (i) \implies (ii) that if L/K is [Galois,](#page-34-1) $G =$ $Gal(L/K)$ $Gal(L/K)$ $Gal(L/K)$, and $\alpha \in L$ then the [minimal polynomial](#page-7-0) of α over K is

$$
\prod_{i=1}^{m} (X - \alpha_i)
$$

where $\alpha_1, \ldots, \alpha_m$ are the distinct elements of $\text{ord}_G(\alpha) = {\sigma(\alpha) : \sigma \in G}$.

Theorem6.4 (Fundamental Theorem of Galois Theory). Let L/K be a [finite](#page-4-0) [Galois](#page-34-1) [extension,](#page-3-1) $G = \text{Gal}(L/K)$ $G = \text{Gal}(L/K)$ $G = \text{Gal}(L/K)$.

- (a) Let F be an intermediate [field,](#page-3-2) i.e. $K \subset F \subset L$. Then L/F is [Galois](#page-34-1) and $Gal(L/F)$ $Gal(L/F)$ $Gal(L/F)$ is a subgroup of G.
- (b) There is an inclusion reversing bijection

{intermediate fields
$$
K \subset F \subset L
$$
} \rightarrow {subgroups $H \subset G$ }
$$
F \mapsto \operatorname{Gal}(L/F)
$$

$$
L^H \leftarrow H
$$

(c) Let F be an intermediate [field,](#page-3-2) i.e. $K \subset F \subset L$. Then

$$
F/K \text{ Galois} \iff \sigma F = F \,\forall \sigma \in G
$$

$$
\iff H = \text{Gal}(L/F) \text{ is a normal subgroup of } G
$$

In this case the restriction map

$$
G \to \text{Gal}(F/K)
$$

$$
\sigma \mapsto \sigma|_F
$$

is surjective with kernel H , and so

$$
\operatorname{Gal}(F/K) \cong G/H
$$

(a quotient of G).

Proof.

- (a) By [Theorem 6.2,](#page-36-0) L is the [splitting field](#page-17-0) over K of some [separable](#page-29-1) polynomial $f \in$ $K[X]$ $K[X]$. Then L is the [splitting field](#page-17-0) of f over F. So L/F is [Galois.](#page-34-1) Gal (L/F) is a subgroup of Gal (L/K) (L/K) (L/K) since any [automorphism](#page-34-4) of L acting as the identity on F also acts as the identity on K.
- (b) To show we have a bijection, we need to check both compositions are the identity.
	- (i) $F = L^{Gal(L/F)}$ $F = L^{Gal(L/F)}$ $F = L^{Gal(L/F)}$ $F = L^{Gal(L/F)}$: This holds since L/F is [Galois.](#page-34-1)
	- (ii) Gal $(L/L^H) = H$ $(L/L^H) = H$ $(L/L^H) = H$ $(L/L^H) = H$: we certainly have $H \subset Gal(L/L^H)$ $H \subset Gal(L/L^H)$ $H \subset Gal(L/L^H)$ so it suffices to show $\#\operatorname{Gal}(L/L^H) \leq \#H$ $\#\operatorname{Gal}(L/L^H) \leq \#H$ $\#\operatorname{Gal}(L/L^H) \leq \#H$ $\#\operatorname{Gal}(L/L^H) \leq \#H$. Let $F = L^H$. As L/F is [finite](#page-4-0) and [separable,](#page-29-0) the [Theorem of the Primitive Element](#page-30-0) tells us that $L = F(\alpha)$ $L = F(\alpha)$ $L = F(\alpha)$ for some $\alpha \in L$. Then α is a root of

$$
f(X) = \prod_{\sigma \in H} (X - \sigma(\alpha))
$$

which has coefficients in $L^H = F$ $L^H = F$. Therefore $\# \text{Gal}(L/L^H) = [L : L^H] =$ $[F(\alpha): F] \leq \deg f = \#H.$ $[F(\alpha): F] \leq \deg f = \#H.$ $[F(\alpha): F] \leq \deg f = \#H.$

If $F_1 \subset F_2$ then $Gal(L/F_2) \subset Gal(L/F_1)$ $Gal(L/F_2) \subset Gal(L/F_1)$ $Gal(L/F_2) \subset Gal(L/F_1)$, so the bijection reverses inclusions.

(c) We first show

$$
F/K \text{ Galois} \iff \sigma F = F \,\,\forall \sigma \in G.
$$

- \Rightarrow Let $\alpha \in F$ have [minimal polynomial](#page-7-0) f over K. For any $\sigma \in G$, $\sigma(\alpha)$ is a root of f. Since F/K F/K is [normal](#page-27-0) we have $\sigma(\alpha) \in F$, so $\sigma F \subset F$. As $[\sigma F : K] = [F : K]$, it follows that $\sigma F = F$.
- \Leftarrow Let $\alpha \in F$. By [Remark 6.3,](#page-37-1) its [minimal polynomial](#page-7-0) over K is

$$
f(X) = \prod_{i=1}^{m} (X - \alpha_i)
$$

where $\alpha_1, \ldots, \alpha_m$ are the distinct elements of $\{\sigma(\alpha): \sigma \in G\}$. The assumption $\sigma(F) = F \,\forall \sigma \in G$ tells us that $\alpha_1, \ldots, \alpha_m \in F$. This shows F/K is [normal.](#page-27-0) But also, L/K [Galois,](#page-34-1) so so L/K is [separable,](#page-29-0) so F/K is [separable.](#page-29-0) Hence F/K is [normal](#page-27-0) and [separable,](#page-29-0) so by [Theorem 6.2,](#page-36-0) F/K is [Galois.](#page-34-1)

Suppose $H \subset G$ corresponds to $F = L^H$ $F = L^H$ $F = L^H$. For $\sigma \in G$,

$$
L^{\sigma H \sigma^{-1}} = \{ x \in L \mid \sigma \tau \sigma^{-1}(x) = x \,\forall \tau \in H \}
$$

$$
= \{ x \in L \mid \tau \sigma^{-1}(x) = \sigma^{-1}(x) \,\forall \tau \in H \}
$$

$$
= \{ x \in L \mid \sigma^{-1}(x) \in L^H = F \}
$$

$$
= \sigma F
$$

So

$$
\sigma F = F \,\forall \sigma \in G \iff L^{\sigma H \sigma^{-1}} = L^H \,\forall \sigma \in G
$$

$$
\iff \sigma H \sigma^{-1} = H \,\forall \sigma \in G
$$

$$
\iff H \subset G \text{ is a normal subgroup}
$$

Consider the restriction map

$$
G = \text{Gal}(L/K) \mapsto \text{Gal}(F/K)
$$

$$
\sigma \mapsto \sigma|_F
$$

Then

$$
\ker(\text{res}) = \{ \sigma \in \text{Gal}(L/K) \mid \sigma(x) = x \,\,\forall x \in F \} = \text{Gal}(L/F) = H
$$

Therefore $G/H \cong \text{Im}(\text{res}) \leq \text{Gal}(F/K)$. But,

$$
#(G/H) = \frac{\#G}{\#H} = \frac{[L:K]}{[L:F]} = [F:K] = # \text{Gal}(F/K).
$$

Therefore res is surjcetive and $Gal(F/K) \cong G/H$ $Gal(F/K) \cong G/H$.

Example 6.5. Let $K = \mathbb{Q}(\sqrt{2})$ 2, $\sqrt{3}$). K/\mathbb{Q} K/\mathbb{Q} is the [splitting field](#page-17-0) of the polynomial $(X^2-2)(X^2-3)$. Therefore K/\mathbb{Q} K/\mathbb{Q} is [normal.](#page-27-0) [Separability](#page-29-0) is automatic in [char](#page-3-3) = 0, hence K/\mathbb{Q} K/\mathbb{Q} K/\mathbb{Q} is [Galois.](#page-34-1) If $\sigma \in \text{Gal}(K/\mathbb{Q})$ $\sigma \in \text{Gal}(K/\mathbb{Q})$ $\sigma \in \text{Gal}(K/\mathbb{Q})$, then it is uniquely determined by $\sigma(\sqrt{2})$ and σ (√ 3). Since σ ([∴]∶ $(2) = \pm$ √ 2 and σ (√ $(3) = \pm$ √ 3, we have

 $\#\operatorname{Gal}(K/\mathbb{Q})\leq 4.$ $\#\operatorname{Gal}(K/\mathbb{Q})\leq 4.$ $\#\operatorname{Gal}(K/\mathbb{Q})\leq 4.$

We saw in [Example 1.11](#page-10-0) that $[K : \mathbb{Q}] = 4$ $[K : \mathbb{Q}] = 4$ $[K : \mathbb{Q}] = 4$. Hence $\# \text{Gal}(K/\mathbb{Q}) = 4$ $\# \text{Gal}(K/\mathbb{Q}) = 4$ $\# \text{Gal}(K/\mathbb{Q}) = 4$. Let

$$
\sigma : \sqrt{2} \mapsto \sqrt{2}; \sqrt{3} \mapsto -\sqrt{3}
$$

$$
\tau : \sqrt{2} \mapsto -\sqrt{2}; \sqrt{3} \mapsto \sqrt{3}
$$

Then $\sigma^2 = \tau^2 = \text{id}$ and $\sigma\tau = \tau\sigma$, so $\text{Gal}(K/\mathbb{Q}) \cong C_2 \times C_2$ $\text{Gal}(K/\mathbb{Q}) \cong C_2 \times C_2$ $\text{Gal}(K/\mathbb{Q}) \cong C_2 \times C_2$.

Start of

[lecture 13](https://notes.ggim.me/Galois#lecturelink.13) **Example 6.6.** Let $K = \mathbb{Q}(\alpha)$ $K = \mathbb{Q}(\alpha)$ $K = \mathbb{Q}(\alpha)$ where $\alpha = \sqrt{2 + \sqrt{2}}$. Then $(\alpha^2 - 2)^2 = 2$, so α is a root of $f(X) = X^4 - 4X^2 + 2$ $f(X) = X^4 - 4X^2 + 2$ $f(X) = X^4 - 4X^2 + 2$. This is irreducible in $\mathbb{Z}[X]$ by Eisenstein's criterion with $p = 2$. Therefore it is irreducible in $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ $\mathbb{Q}[X]$ by Gauss' Lemma, so $[K : \mathbb{Q}] = 4$ $[K : \mathbb{Q}] = 4$ $[K : \mathbb{Q}] = 4$.

> Now $(2+\sqrt{2})(2-\sqrt{2})$ √ $(2) = 2$, so f has roots $\pm \alpha, \pm \beta$ $\sqrt{2}$ $\sqrt{2}$ (note $\sqrt{2} = \alpha^2 - 2$). Therefore Kis a [splitting field](#page-17-0) for f over Q, so K/\mathbb{Q} K/\mathbb{Q} is [normal](#page-27-0) hence [Galois](#page-34-1) (since [separability](#page-29-0) is automatic in [char](#page-3-3) 0).

> If $\sigma \in \text{Gal}(K/\mathbb{Q})$ $\sigma \in \text{Gal}(K/\mathbb{Q})$ $\sigma \in \text{Gal}(K/\mathbb{Q})$ then it is uniquely determined by $\sigma(\alpha)$. But $\sigma(\alpha) \in \{\pm \alpha, \pm \sqrt{\alpha}\}$ $2/\alpha\},$ and $\#\operatorname{Gal}(K/\mathbb{Q}) = [K : \mathbb{Q}] = 4$ $\#\operatorname{Gal}(K/\mathbb{Q}) = [K : \mathbb{Q}] = 4$, so all possibilities must occur (could see this more directly using [Theorem 3.2\)](#page-15-0). We fix $\sigma \in \text{Gal}(K/\mathbb{Q})$ $\sigma \in \text{Gal}(K/\mathbb{Q})$ $\sigma \in \text{Gal}(K/\mathbb{Q})$ with $\sigma(\alpha) = \frac{\sqrt{2}}{\alpha}$ 2). We fix $\sigma \in \text{Gal}(K/\mathbb{Q})$ with $\sigma(\alpha) = \frac{\sqrt{2}}{\alpha}$, hence more directly using Theorem 3.2). We fix $\sigma \in \text{Gal}(K)$
 $\sigma(\alpha^2) = \frac{2}{\alpha^2}$, so $\sigma(2 + \sqrt{2}) = 2 - \sqrt{2}$, so $\sigma(\sqrt{2}) = -\sqrt{2}$.

Therefore

$$
\sigma^{2}(\alpha) = \sigma\left(\frac{\sqrt{2}}{\alpha}\right) = -\frac{\sqrt{2}}{\left(\frac{\sqrt{2}}{\alpha}\right)} = -\alpha
$$

Therefore $\sigma^2 \neq id$, but $\sigma^4 = id$. So

$$
\mathrm{Gal}(K/\mathbb{Q})\cong C_4
$$

Definition(Composite subfield). Let L_1 , L_2 be su[bfields](#page-3-2) of a [field](#page-3-2) M. The *composite* L_1L_2 is the smallest su[bfield](#page-3-2) of M to contain both L_1 and L_2 . (This exists since the intersection of any collection of su[bfields](#page-3-2) is a su[bfield\)](#page-3-2).

Theorem 6.7. Let $[M : k] < \infty$ $[M : k] < \infty$ $[M : k] < \infty$ and let L_1, L_2 be intermediate [fields](#page-3-2) i.e. $K \subset$ $L_i \subset M$ for $i = 1, 2$.

(i) If L_1/K L_1/K is [Galois](#page-34-1) then L_1L_2/L_2 L_1L_2/L_2 L_1L_2/L_2 L_1L_2/L_2 is Galois and there is an injective group homomorphism

This is surjective if and only if $L_1 \cap L_2 = K$.

 $Gal(L_1L_2/L_2) \hookrightarrow Gal(L_1/K)$ $Gal(L_1L_2/L_2) \hookrightarrow Gal(L_1/K)$

(ii) If L_1/K L_1/K and L_2/K L_2/K are both [Galois](#page-34-1) then L_1L_2/K is Galois and there is an injective group homomorphism

 $Gal(L_1L_2/K) \hookrightarrow Gal(L_1/K) \times Gal(L_1/K)$ $Gal(L_1L_2/K) \hookrightarrow Gal(L_1/K) \times Gal(L_1/K)$

This is surjective if and only if $L_1 \cap L_2 = K$.

Proof.

(i) L_1/K L_1/K [Galois](#page-34-1) $\implies L_1$ is the [splitting field](#page-17-0) of some [separable](#page-29-1) polynomial $f \in K[X]$ $f \in K[X]$ $f \in K[X]$. Then L_1L_2 L_1L_2 is a [splitting field](#page-17-0) for f over L_2 . Therefore L_1L_2/L_2 L_1L_2/L_2 L_1L_2/L_2 is [Galois.](#page-34-1) If $\sigma \in \text{Gal}(L_1L_2/L_2)$ $\sigma \in \text{Gal}(L_1L_2/L_2)$ $\sigma \in \text{Gal}(L_1L_2/L_2)$ $\sigma \in \text{Gal}(L_1L_2/L_2)$ $\sigma \in \text{Gal}(L_1L_2/L_2)$, then $\sigma|_K = \text{id}$ and since L_1/K L_1/K is [normal](#page-27-0) we have $\sigma(L_1) \subset L_1$.

We consider the group homomorphism

$$
Gal(L_1L_2/L_2) \xrightarrow{\text{res}} Gal(L_1/K)
$$

$$
\sigma \longmapsto \sigma|_{L_1}
$$

It is injective since if $\sigma|_{L_1} = id$ then σ acts trivially on both L_1 and L_2 and hence on L_1L_2 L_1L_2 . Now suppose $L_1 \cap L_2 = K$. Then L_1/K L_1/K is [finite](#page-4-0) and [separable.](#page-29-0) So by [Theorem of the Primitive Element,](#page-30-0) $L_1 = K(\alpha)$ $L_1 = K(\alpha)$ $L_1 = K(\alpha)$ for some $\alpha \in L_1$. Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ be the [minimal polynomial](#page-7-0) of α over K. Suppose $f = gh$ for some $g, h \in L_2[X], \deg g, \deg h > 0$ $g, h \in L_2[X], \deg g, \deg h > 0$ $g, h \in L_2[X], \deg g, \deg h > 0$. Then f splits into linear factors over L_1 , so g and h have coefficients in $L_1 \cap L_2 = K$, which contradicts the fact that f is irreducible over K. Therefore f is irreducible in $L_2[X]$ $L_2[X]$ $L_2[X]$. Therefore

$$
[L_1:K] = \deg f = [L_1L_2:L_2]
$$

The map res is therefore an isomorphism. Conversely, if Im(res) $\subset Gal(L_1/L_1 \cap$ L_2) ⊂ [Gal\(](#page-37-0) L_1/K L_1/K). So if res is surjective then $L_1 \cap L_2 = K$.

(ii) L_i/K L_i/K [Galois](#page-34-1) $\implies L_i$ is a [splitting field](#page-17-0) of some [separable](#page-29-1) polynomial $f_i \in K[X]$ $f_i \in K[X]$ $f_i \in K[X]$. Then L_1L_2 L_1L_2 is the [splitting field](#page-17-0) of the [separable](#page-29-1) lcm(f_1, f_2). Therefore L_1L_2/K L_1L_2/K is [Galois.](#page-34-1)

It is surjective
$$
\iff [L_1L_2:K] = [L_1:k][L_2:K]
$$

\n $\iff [L_1L_2:L_2][L_2:K] = [L_1:K][L_2:K]$
\n $\xrightarrow{\text{(i)}} L_1 \cap L_2 = K$

Theorem6.8. Let L/K be [finite](#page-4-0) and [separable.](#page-29-0) Then there exists a finite [extension](#page-3-1) M/L such that

(i) M/K is [Galois.](#page-34-1)

- (ii) If $L \subset M' \subset M$ and M'/K M'/K is [Galois](#page-34-1) then $M'=M$.
- We say M [/K](#page-3-0) is a *Galois closure* of [L/K](#page-3-0).

Proof. By [Theorem of the Primitive Element,](#page-30-0) $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$ for some $\alpha \in L$. Let f be the [minimal polynomial](#page-7-0) of α over K. Then L/K [separable](#page-29-0) implies f is [separable.](#page-29-1) Let M bea [splitting field](#page-17-0) for f over L. Since $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$ where α is a root of f, it follows that Mis a [splitting field](#page-17-0) of f over K. Now [Theorem 6.2](#page-36-0) implies that M/K is [Galois.](#page-34-1) Let M' as (ii). As $\alpha \in M'$ and M'/K M'/K is [normal,](#page-27-0) f splits into linear factors over M'. Hence $M'=M.$ \Box

Start of

[lecture 14](https://notes.ggim.me/Galois#lecturelink.14) **Example.** $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ has [Galois closure](#page-42-0) $\mathbb{Q}(\omega, \sqrt[3]{2})/\mathbb{Q}$ where $\omega = e^{2\pi i/3}$.

7 Trace and Norm

Let L/K be a [finite](#page-4-0) [extension,](#page-3-1) say $[L:K] = n$ $[L:K] = n$ $[L:K] = n$. For $\alpha \in L$ the map

$$
L \xrightarrow{m_{\alpha}} L
$$

$$
x \longmapsto \alpha x
$$

is a K -linear endomorphism of L , hence has a trace and a determinant.

Definition (Trace and norm). The *trace* and *norm* of α are

$$
\text{Tr}_{L/K}(\alpha) = \text{Tr}(m_{\alpha}) \qquad N_{L/K}(\alpha) = \det(m_{\alpha})
$$

Concretely, if L has K-basis v_1, \ldots, v_n and $A = (a_{ij})$ is the unique $n \times n$ matrix with entries in K such that

$$
\alpha(v_j) = \sum_{i=1}^n a_{ij}v_i \quad \text{and} \quad \forall 1 \le j \le n
$$

then

$$
\text{Tr}_{L/K} = \text{Tr}\,A \qquad \text{and} \qquad N_{L/K}(\alpha) = \det(A)
$$

Example. $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{d}), d \in \mathbb{Z}$ $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{d}), d \in \mathbb{Z}$ $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{d}), d \in \mathbb{Z}$ not a square. If $\alpha = x + y\sqrt{d}, x, y \in \mathbb{Q}$, then (since L has K-basis $1, \sqrt{d}$):

$$
\operatorname{Tr}_{\mathbb{Q}(\sqrt{d})/\mathbb{Q}}(\alpha) = \operatorname{Tr}\begin{pmatrix} x & dy \\ y & x \end{pmatrix} = 2x
$$

$$
N_{\mathbb{Q}(\sqrt{d})/\mathbb{Q}}(\alpha) = \det\begin{pmatrix} x & dy \\ y & x \end{pmatrix} = x^2 - dy^2
$$

Lemma 7.1.

- (i) [Tr](#page-44-0) $_{L/K}: L \to K$ $_{L/K}: L \to K$ $_{L/K}: L \to K$ is a K-linear map.
- (ii) $N_{L/K}: L \to K$ $N_{L/K}: L \to K$ $N_{L/K}: L \to K$ $N_{L/K}: L \to K$ is multiplicative, i.e.

$$
N_{L/K}(\alpha \beta) = N_{L/K}(\alpha) N_{L/K}(\beta) \qquad \forall \alpha, \beta \in L
$$

(iii) If $\alpha \in K$ tehn

$$
\text{Tr}_{L/K} = [L : K] \alpha
$$

$$
N_{L/K}(\alpha) = \alpha^{[L:K]}
$$

(iv) If $\alpha \in L$ then

$$
N_{L/K}(\alpha) = 0 \iff \alpha = 0.
$$

Proof. (i) and (ii) follow from the corrsponding statements for traces and determinants. For (iii), if $\alpha \in K$ then m_{α} is represented by

$$
\begin{pmatrix}\n\alpha & 0 & \cdots & 0 \\
0 & \alpha & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha\n\end{pmatrix}
$$

which has trace and determinant as indicated.

For (iv), note

$$
N_{L/K}(\alpha) \neq 0 \iff m_\alpha \text{ is invertible } \iff \alpha \neq 0
$$

 \Box

Lemma7.2. Let $M/L/K$ be a [field extension](#page-3-4) and $\alpha \in L$. Then

$$
\operatorname{Tr}_{M/K}(\alpha) = [M:L] \operatorname{Tr}_{L/K}(\alpha)
$$

$$
N_{M/K}(\alpha) = N_{L/K}(\alpha)^{[M:L]}
$$

Proof. If A represents m_{α} with respect to some basis for L/K and B represents m_{α} with

respect to some basis for M/K picked by following the proof of the [Tower Law,](#page-5-0) then

$$
B = \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A \end{pmatrix}
$$

where A is $[L: K] \times [L: K]$ $[L: K] \times [L: K]$ $[L: K] \times [L: K]$ and B is $[M: K] \times [M: K]$ $[M: K] \times [M: K]$ $[M: K] \times [M: K]$. Then $\text{Tr}(B) = [M : L] \text{Tr}(A)$ $\text{Tr}(B) = [M : L] \text{Tr}(A)$ $\text{Tr}(B) = [M : L] \text{Tr}(A)$ and $[M:L]$ $[M:L]$ $[M:L]$ \Box

Theorem 7.3. Let $[L : K] < \infty$ $[L : K] < \infty$ $[L : K] < \infty$. Let $\alpha \in L$. Let f be the [minimal polynomial](#page-7-0) of α over $K,$ say

$$
f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 \qquad a_i \in K
$$

Then

$$
\operatorname{Tr}_{L/K}(\alpha) = -ma_{n-1}
$$

$$
N_{L/K}(\alpha) = ((-1)^n a_0)^m
$$

where $m = [L : L(\alpha)].$

Proof. By [Lemma 7.2](#page-45-0) without loss of generality $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$, i.e. $m = 1$. If A represents m_{α} with respect to basis $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ then

$$
A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -a_{n-2} \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}
$$

Therefore

$$
\operatorname{Tr}_{L/K}(\alpha) = \operatorname{Tr}(A) = -a_{n-1}
$$

$$
N_{L/K}(\alpha) = \det(A) = (-1)^n a_0
$$

Example.
$$
K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{d})
$$

\n $\alpha = x + y\sqrt{d} \implies (\alpha - x)^2 = dy^2$
\n $\implies \alpha$ is a root of $T^2 - 2xT + x^2 - dy^2 = 0$
\ntrace

Theorem7.4 (Transitivity of trace and norm). Let $M/L/K$ be a [finite](#page-4-0) [extension](#page-3-1) and $\alpha \in M$. Then

Tr
$$
_{M/K}(\alpha) =
$$
 Tr $_{L/K}$ (Tr $_{M/L}(\alpha)$)
\n $N_{M/K}(\alpha) = N_{L/K}(N_{M/L}(\alpha))$

Proof (sketch – non-examinable). By [Lemma 7.2,](#page-45-0) without loss of generality $M = L(\alpha)$ $M = L(\alpha)$ $M = L(\alpha)$. Let f be the [minimal polynomial](#page-7-0) of α over L, say

$$
f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0, \qquad a_i \in L
$$

 L/K has basis v_1, \ldots, v_m and M/L has basis $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$. If A_i represents m_{a_i} with respect to v_1, \ldots, v_m and B represents m_α with respect to $(v_i \alpha^{j-1})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ then

 $(A_i \text{ is } m \times m, B \text{ is } mn \times mn)$. We compute

Tr
$$
M/K \stackrel{\text{defn}}{=} \text{Tr}(B)
$$

\n $= -\text{Tr}(A_{n-1})$
\n $\stackrel{\text{defn}}{=} \text{Tr}_{L/K}(-a_{n-1})$
\nTheorem 7.3 Tr $L/K(\text{Tr } M/L(\alpha))$
\n $N_{M/K}(\alpha) \stackrel{\text{defn}}{=} \text{det}(B)$
\n $\stackrel{\text{exercise}}{=} (-1)^{mn} \text{det}(A_0)$
\n $\stackrel{\text{defn}}{=} N_{L/K}((-1)^n a_0)$
\nTheorem 7.3 $N_{L/K}(N_{M/L}(\alpha))$

Theorem7.5. Let L/K be a [finite](#page-4-0) [Galois](#page-34-1) [extension](#page-3-1) with $G = \text{Gal}(L/K)$. Let $\alpha \in L$. Then

$$
\text{Tr}_{L/K}(\alpha) = \sum_{\sigma \in G} \sigma(\alpha) \qquad \text{and} \qquad N_{L/K}(\alpha) = \prod_{\sigma \in G} \sigma(\alpha)
$$

Proof. By [Remark 6.3,](#page-37-1) the [minimal polynomial](#page-7-0) of α over K is

$$
f(X) = \prod_{i=1}^{n} (X - \alpha_i)
$$

where $\mathrm{orb}_G(\alpha) = \{\alpha_1, \ldots, \alpha_n\}$. Let $m = [L : K(\alpha)] = \# \mathrm{Stab}_G(\alpha)$ $m = [L : K(\alpha)] = \# \mathrm{Stab}_G(\alpha)$ $m = [L : K(\alpha)] = \# \mathrm{Stab}_G(\alpha)$. Now

Tr
$$
_{L/K}(\alpha)
$$
 Theorem 7.3 $m \sum_{i=1}^{n} \alpha_i = \sum_{\sigma \in G} \sigma(\alpha)$
\n $N_{L/K}(\alpha)$ Theorem 7.3 $\left(\prod_{i=1}^{n} \alpha \right)i \right)^m = \prod_{\sigma \in G} \sigma(\alpha)$

where the final equality on each line follows by the proof of Orbit-Stabiliser Theorem. \Box

Example. $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{2})$ $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{2})$ $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{2})$ d). Gal $(L/K) = \{1, \sigma\}, \sigma($ $(L/K) = \{1, \sigma\}, \sigma($ $(L/K) = \{1, \sigma\}, \sigma($ √ $(d) = -$ √ $d\mathcal{L} = \mathbb{Q}, L = \mathbb{Q}(\sqrt{d}).$ Gal $(L/K) = \{1, \sigma\}, \sigma(\sqrt{d}) = -\sqrt{d}.$ Then for $\alpha = x + y\sqrt{d}, x, y \in \mathbb{Q},$ $\text{Tr }_{L/K}(\alpha) = (x + y)$ $\text{Tr }_{L/K}(\alpha) = (x + y)$ √ $d) = (x + y)$ √ $(d) + (x - y)$ √ $d) = 2x$ $N_{L/K}(\alpha) = (x + y)$ $N_{L/K}(\alpha) = (x + y)$ $N_{L/K}(\alpha) = (x + y)$ $N_{L/K}(\alpha) = (x + y)$ √ $d(x-y)$ √ $\overline{d}) = x^2 - dy^2$ We generalise [Theorem 7.5](#page-47-0) to L/K [separable.](#page-29-0)

Start of

[lecture 15](https://notes.ggim.me/Galois#lecturelink.15) We generalise to L/K [separable.](#page-29-0) Let \overline{K} be an [algebraic closure](#page-21-0) of K. Then implies that $\#\operatorname{Hom}_K(L,\overline{K})=[L:K].$ $\#\operatorname{Hom}_K(L,\overline{K})=[L:K].$ $\#\operatorname{Hom}_K(L,\overline{K})=[L:K].$

> **Theorem7.6.** Let L/K be a [finite](#page-4-0) [separable](#page-29-0) [extension](#page-3-1) of [degree](#page-4-0) d. Let $\sigma_1, \ldots, \sigma_d$ be the K[-embeddings](#page-15-1) $L \hookrightarrow \overline{K}$. Let $\alpha \in L$. Then

$$
\operatorname{Tr}_{L/K}(\alpha) = \sum_{i=1}^d \sigma_i(\alpha), \qquad N_{L/K}(\alpha) = \prod_{i=1}^d \sigma_i(\alpha).
$$

Proof. Let f be the [minimal polynomial](#page-7-0) of α over K. Let $\alpha_1, \ldots, \alpha_n$ be the roots of f in \overline{K} . By,

$$
Hom_K(K(\alpha), \overline{K}) \leftrightarrow {\alpha_1, \dots, \alpha_n}
$$

$$
\sigma \mapsto \sigma(\alpha)
$$

Since $L/K(\alpha)$ $L/K(\alpha)$ $L/K(\alpha)$ is [separable,](#page-29-0) each K[-embedding](#page-15-1) $K(\alpha) \hookrightarrow \overline{K}$ extends to an [embedding](#page-4-1) $L \hookrightarrow K$ $L \hookrightarrow K$ in exactly $m = [L : K(\alpha)]$ ways. Therefore

Tr
$$
{L/K}(\alpha) = m \sum{j=1}^{n} \alpha_j = \sum_{i=1}^{d} \sigma_i(\alpha)
$$

 $N_{L/K}(\alpha) = \left(\prod_{j=1}^{n} \alpha_j\right)^m = \prod_{i=1}^{d} \sigma_i(\alpha)$

(the first equality in each line holds by , and the second equality in each line holds since $\# \{ 1 \leq i \leq d \mid \sigma_i(\alpha) = \alpha_j \} = m).$ \Box

8 Finite Fields

Fix p a prime number. Recall $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. We describe all finite [fields](#page-3-2) of [characteristic](#page-3-3) p (these are necessarily [finite](#page-4-0) [extensions](#page-3-1) of \mathbb{F}_p) and their Galois theory. We will use [Proposition 1.2,](#page-4-2) [Proposition 1.3](#page-5-1) and [Proposition 1.4,](#page-5-2) so it is worth revisiting these.

Note. ϕ in [Proposition 1.4](#page-5-2) is an automorphism of K (injective since a homomorphism of [fields,](#page-3-2) hence surjective since $|K| < \infty$).

Theorem 8.1. Let $q = p^n$ for some $n \ge 1$. Then:

- (i)There exists a [field](#page-3-2) with q elements.
- (ii) Any [field](#page-3-2)with q elemenst is a [splitting field](#page-17-0) of $X^q X$ over \mathbb{F}_p .

In particular, any two finite [fields](#page-3-2) with the same order are isomorphic (by [Uniqueness](#page-18-0) [of splitting fields\)](#page-18-0).

Proof.

(i)Let L be a [splitting field](#page-17-0) of $f(x) = X^q - X$ over \mathbb{F}_p . Let $K \subset L$ be the [fixed field](#page-34-5) of $\phi^n : L \to L$ (note $\phi^n(x) = x^q$). Then

$$
K = \{ \alpha \in L \mid \phi^n(\alpha) = \alpha \} = \{ \alpha \in L \mid f(\alpha) = 0 \}
$$

Therefore $\#K \leq \deg f = q$. But $f'(X) = -1$ so $\gcd(f, f') = 1$ so f is [separable](#page-29-1) (by [Lemma 5.2\)](#page-28-2). Therefore $#K = q$.

(ii)Suppose K is a [field](#page-3-2) with $#K = q$. Then Lagrange's theorem (group theory) implies that $\alpha^{q-1} = 1 \ \forall \alpha \in K^*$ $\alpha^{q-1} = 1 \ \forall \alpha \in K^*$ $\alpha^{q-1} = 1 \ \forall \alpha \in K^*$, hence $\alpha^q = \alpha \ \forall \alpha \in K$. So

$$
f(X) = X^q - X = \prod_{\alpha \in K} (X - \alpha)
$$

splits into linear factors over K , but clearly not over any proper subfield (since f [separable](#page-29-1)as mentioned in (i)). So K is a [splitting field](#page-17-0) for f over \mathbb{F}_p .

 \Box

Notation. We write \mathbb{F}_q for any field with q elements. By [Theorem 8.1,](#page-50-0) any two such are isomorphic, although there is no canonical choice of isomorphism.

Theorem 8.2. $\mathbb{F}_{p^n}/\mathbb{F}_p$ $\mathbb{F}_{p^n}/\mathbb{F}_p$ $\mathbb{F}_{p^n}/\mathbb{F}_p$ $\mathbb{F}_{p^n}/\mathbb{F}_p$ $\mathbb{F}_{p^n}/\mathbb{F}_p$ is [Galois](#page-34-1) with $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ cyclic of order *n*, generated by the [Frobenius](#page-5-2) $\phi: x \mapsto x^p$.

Proof. Let $L = \mathbb{F}_{p^n}$ $L = \mathbb{F}_{p^n}$ $L = \mathbb{F}_{p^n}$. Let $G \subset Aut(L/\mathbb{F}_p)$ $G \subset Aut(L/\mathbb{F}_p)$ $G \subset Aut(L/\mathbb{F}_p)$ $G \subset Aut(L/\mathbb{F}_p)$ be the subgroup generated by [Frobenius.](#page-5-2) Then

$$
#LG = #L\phi
$$

= #{ $\alpha \in L | \alpha^{p} - \alpha = 0$ }
 $\leq p$ (Lemma 1.1)

But $\mathbb{F}_p \subset L^G$ $\mathbb{F}_p \subset L^G$ $\mathbb{F}_p \subset L^G$, so $L^G = \mathbb{F}_p$. So

$$
\mathbb{F}_p\subset L^{{\rm Aut}(L/\mathbb{F}_p)}\subset L^G=\mathbb{F}_p
$$

so we get $\mathbb{F}_p = L^{\text{Aut}(L/\mathbb{F}_p)}$ $\mathbb{F}_p = L^{\text{Aut}(L/\mathbb{F}_p)}$ $\mathbb{F}_p = L^{\text{Aut}(L/\mathbb{F}_p)}$, i.e. L/\mathbb{F}_p L/\mathbb{F}_p is [Galois.](#page-34-1) Also, we get $L^{\text{Aut}(L/\mathbb{F}_p)} = L^G$, which implies $\mathrm{Aut}(L/\mathbb{F}_p)=G$ $\mathrm{Aut}(L/\mathbb{F}_p)=G$ $\mathrm{Aut}(L/\mathbb{F}_p)=G$. Therefore

$$
\mathrm{Gal}(L/\mathbb{F}_p)=G=\langle\phi\rangle
$$

and it has order $[L : \mathbb{F}_p] = n$ $[L : \mathbb{F}_p] = n$ $[L : \mathbb{F}_p] = n$.

Corollary 8.3. Let L/K be any [extension](#page-3-1) of finite [fields](#page-3-2) with $\#K = q$. Then L/K is [Galois](#page-34-1) with Gal (L/K) (L/K) (L/K) cyclic, generated by the q-power Frobenius $x \mapsto x^q$.

Proof. Let $L = \mathbb{F}_{p^n}$ $L = \mathbb{F}_{p^n}$ $L = \mathbb{F}_{p^n}$. We have $\mathbb{F}_p \subset K \subset L$. By [Theorem 8.2,](#page-51-0) L/\mathbb{F}_p L/\mathbb{F}_p is [Galois](#page-34-1) with

$$
G = \text{Gal}(L/\mathbb{F}_p) = \langle \phi \rangle \cong C_n
$$

where $\phi: x \mapsto x^p$. [Fundamental Theorem of Galois Theory](#page-37-2) gives that L/K is [Galois](#page-34-1) and $H = \text{Gal}(L/K) \subset G$ $H = \text{Gal}(L/K) \subset G$ $H = \text{Gal}(L/K) \subset G$. Since $G = \langle \phi \rangle \cong C_n$ we have $H = \langle \phi^m \rangle$ for some $m \mid n$. Then

$$
[K : \mathbb{F}_p] = \frac{[L : \mathbb{F}_p]}{[L : K]} = \frac{\#G}{\#H} = (G : H) = m \tag{*}
$$

Therefore $q = #K = p^m$ and $\phi^m : x \mapsto x^q$.

Corollary 8.4. \mathbb{F}_{p^n} \mathbb{F}_{p^n} \mathbb{F}_{p^n} has a unique subfield of order p^m for each $m \mid n$ and no others.

Proof. We apply the [Fundamental Theorem of Galois Theory.](#page-37-2) The subgroups of $G =$ $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p) = \langle \phi \rangle \cong C_n$ are the subgroups $H = \langle \phi^m \rangle$ for $m | n$ (and no others). If $K = \mathbb{F}_{p^n}^H$ $K = \mathbb{F}_{p^n}^H$ $K = \mathbb{F}_{p^n}^H$ then $H = \text{Gal}(\mathbb{F}_{p^n}/K)$ $H = \text{Gal}(\mathbb{F}_{p^n}/K)$ $H = \text{Gal}(\mathbb{F}_{p^n}/K)$ and $[K : \mathbb{F}_p] = (G : H) = m$ $[K : \mathbb{F}_p] = (G : H) = m$ $[K : \mathbb{F}_p] = (G : H) = m$ $[K : \mathbb{F}_p] = (G : H) = m$ $[K : \mathbb{F}_p] = (G : H) = m$ (see (*)). Therefore $\#K = p^m$. \Box

 \Box

Start of

[lecture 16](https://notes.ggim.me/Galois#lecturelink.16)

9 The Galois Group of a Polynomial

Definition(Galois group of a polynomial). Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ be a [separable](#page-29-1) of degree n.Let L be a [splitting field](#page-17-0) for f over K. The action of $G = \text{Gal}(L/K)$ $G = \text{Gal}(L/K)$ $G = \text{Gal}(L/K)$ on the roots $\alpha_1, \ldots, \alpha_n$ of f determines an injective group homomorphism $\iota : G \to S_n$. It's image is the *Galois group of* f *over* K, written $Gal(f)$ $Gal(f)$ or $Gal(f/K)$.

Lemma9.1. Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ be a [separable.](#page-29-1) Then

f irreducible
$$
\iff
$$
 Gal (f/K) is transitive

(Recall $H \subset S_n$ is transitive if $\forall i, j \in \{1, ..., n\}$, there exists $\sigma \in H$ such that $\sigma(i) = j$).

Proof.

- \Rightarrow If $f = gh, g, h \in K[X], \deg g > 0, \deg h > 0$ $f = gh, g, h \in K[X], \deg g > 0, \deg h > 0$ $f = gh, g, h \in K[X], \deg g > 0, \deg h > 0$ then $Gal(f/K)$ $Gal(f/K)$ sends roots of g to roots of g (and not to roots of h), and so cannot act transitively on the roots of f.
- \Leftarrow Without loss of generality, f is monic. Let $\alpha \in L$ be a root of f. Then f is the [minimal polynomial](#page-7-0) of α over K. Then by [Remark 6.3,](#page-37-1)

$$
\{\sigma(\alpha) : \sigma \in \text{Gal}(L/K)\} = \{\text{roots of } f \text{ in } L\}
$$

Therefore Gal (L/K) (L/K) (L/K) acts transitively on $\alpha_1, \ldots, \alpha_n$. Therefore Gal $(f/K) \subset S_n$ is a transitive subgroup.

 \Box

Remark (Alternative proof of \Rightarrow). By [Theorem 3.2,](#page-15-0) there exists [[-isomorphismK](#page-15-1)] $K(\alpha_i) \cong K(\alpha_j)$ $K(\alpha_i) \cong K(\alpha_j)$, $\alpha_i \mapsto \alpha_j$. This extends to an automorphis mof L by [Uniqueness of](#page-18-0) [splitting fields](#page-18-0).

Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ be a monic [separable](#page-29-1) polynomial with roots $\alpha_1, \ldots, \alpha_n$ in a [splitting field](#page-17-0) L. Recall from [Section 4,](#page-23-0)

$$
\operatorname{Disc}(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2
$$

Lemma 9.2. Assume [char](#page-3-3) $K \neq 2$. Let $\Delta = \text{Disc}(f)$. The [fixed field](#page-34-5) of $\text{Gal}(f/K) \cap \text{Mod}(f/K)$ A_n is $K(\sqrt{\Delta})$. In particular

$$
\operatorname{Gal}(f/K) \subset A_n \iff \Delta \text{ is a square in } K
$$

Proof. The sign of a permutation $\pi \in S_n$ is defined so that (as an identiy in $\mathbb{Z}[X_1, \ldots, X_n]$) we have

$$
\prod_{i < j} (X_{\pi(i)} - X_{\pi(j)}) = \text{sign}(\pi) \prod_{i < j} (X_i - X_j)
$$

We put $\delta = \prod_{i < j} (\alpha_i - \alpha_j)$ so that $\delta^2 = \Delta$. So if $\sigma \in G = \text{Gal}(f/K) = \text{Gal}(L/K)$ $\sigma \in G = \text{Gal}(f/K) = \text{Gal}(L/K)$ $\sigma \in G = \text{Gal}(f/K) = \text{Gal}(L/K)$ then

 $\sigma(\delta) = \text{sign}(\sigma)\delta.$

As f is [separable](#page-29-1) and [char](#page-3-3) $K \neq 2$, $\delta \neq -\delta$. Therefore

$$
G \cap A_n = \{ \sigma \in G \mid \sigma(\sigma) = 1 \}
$$

$$
= \{ \sigma \in G \mid \sigma(\delta) = \delta \}
$$

$$
= Gal(L/K(\delta))
$$

Therefore $L^{G \cap A_n} = K(\delta)$ $L^{G \cap A_n} = K(\delta)$ $L^{G \cap A_n} = K(\delta)$ $L^{G \cap A_n} = K(\delta)$. In particular,

$$
G \subset A_N \iff G \cap A_n = G
$$

$$
\iff K(\sqrt{\Delta}) = K
$$

$$
\iff \Delta \text{ is a square in } K
$$

Remark. $G = \text{Gal}(g/K) \subset S_n$ $G = \text{Gal}(g/K) \subset S_n$ $G = \text{Gal}(g/K) \subset S_n$ is really only defined up to conjugacy, since if we reorder $\alpha_1, \ldots, \alpha_n$ using $\sigma \in S_n$ then G changes to $\sigma G \sigma^{-1}$. But we *can* distinguish between

 $\langle (12),(34)\rangle \subset S_4$ and $\langle (12)(34),(13)(24)\rangle \subset S_4$

even though both are isomorphic to $C_2 \times C_2$.

What is $G \hookrightarrow S_n$ up to conjugacy?

- $n = 2$: The only transitive subgroup of S_2 is itself.
- $n = 3$: The transitive subgroups of S_3 are S_3 and $A_3 \cong C_3$. So if $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ is irreducible then Gal (f/K) is A_3 or S_3 . By [Lemma 9.2,](#page-54-0) Gal $(f/K) = A_3$ if and only if $Disc(f)$ $Disc(f)$ is a square in K. Taking $n = 3$ in [Example Sheet 2, Question 3](https://www.maths.cam.ac.uk/undergrad/examplesheets) gives

$$
Disc(X^3 + aX + b) = -4a^3 - 27b^2
$$

(LEARN THIS FORMULA).

Example. $f(X) = X^3 - 3X + 1$ (see [Section 2](#page-13-0) and [Example Sheet 1\)](https://www.maths.cam.ac.uk/undergrad/examplesheets).

[Disc\(](#page-26-0)f) = $-4(-3)^3 - 27 = 81 = 9^2$

Therefore Gal (f/\mathbb{Q}) is 1 or A_3 . We checked in [Section 2](#page-13-0) that f is irreducible over \mathbb{Q} , so therefore $Gal(f/\mathbb{Q})=A_3$ $Gal(f/\mathbb{Q})=A_3$.

• $n = 4$: The transitive subgroups of S_4 are

$$
S_4, A_4, D_8, C_4, V \cong C_2 \times C_2
$$

 S_4 , A_4 , V are normal subgroups where

$$
V = \{id, (12)(34), (13)(24), (14)(23)\}
$$

There are 3 conjugate copies of each of C_4 and D_8 .

Let S_4 act on $V \setminus \{id\}$ by conjugation since $g(12)(34)g^{-1} = (g(1)g(2))(g(3)g(4))$ it would be equivalent to let S_4 act on the set of ways of partitioning the set $\{1, 2, 3, 4\}$ into 2 subsets of size 2. The corresponding permutation representation is a group homomorphism $\pi : S_4 \to S_3$. If $H = {\sigma \in S_4 \mid \sigma(1) = 1} = \langle (234), (23) \rangle \subset S_4$ then $\pi|_H : H \to S_3$ is an isomorphism. So π is surjective and $\# \text{ ker } \pi = 4$. V abelian $\implies V \subset \ker \pi$. Hence $V = \ker \pi$.

If $G \subset S_4$ then applying the isomorphism theorem to $\pi|_G$ gives $G/G \cap V \cong \pi(G) \subset$ S_4 .

Start of

[lecture 17](https://notes.ggim.me/Galois#lecturelink.17)

Let $f(X) = \prod_{i=1}^{4} (X - \alpha_i)$ be a monic quartic polynomial. Define

$$
\beta_1 = (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4)
$$

\n
$$
\beta_2 = (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4)
$$

\n
$$
\beta_3 = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3)
$$

Definition. The *resolvent cubic* is

$$
g(X) = \prod_{i=1}^{3} (X - \beta_i).
$$

Theorem 9.3. Let f, g as above.

(i) If $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ then $g \in K[X]$.

(ii) If f is [separable](#page-29-1) then g is [separable.](#page-29-1)

(iii) If (i) and (ii) hold then

$$
\pi(\text{Gal}(f/K)) = \text{Gal}(g/K)
$$

In particular if $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ is irreducible then $Gal(g/K)$ $Gal(g/K)$ $Gal(g/K)$ determines $Gal(f/K)$ up to ambiguity between C_4 and D_8 when $\#\operatorname{Gal}(g/K) = 2$ $\#\operatorname{Gal}(g/K) = 2$ $\#\operatorname{Gal}(g/K) = 2$.

Proof.

(i) More generally each coefficient of g is a symmetric polynomial in $\mathbb{Z}[\beta_1, \beta_2, \beta_3]$, hence a symmetric polynomial in $\mathbb{Z}[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ and so by the [Symmetric](#page-24-0) [Function Theorem,](#page-24-0) is a \mathbb{Z} -coefficient polynomial in the coefficients of f.

(ii)

$$
\beta_1 - \beta_2 = \alpha_1 \alpha_3 + \alpha_4 \alpha_4 + \alpha_2 \alpha_5 + \alpha_2 \alpha_4 - \alpha_1 \alpha_2 - \alpha_4 \alpha_4 - \alpha_2 \alpha_5 - \alpha_3 \alpha_4
$$

= $\alpha_1 \alpha_3 + \alpha_2 \alpha_4 - \alpha_1 \alpha_2 - \alpha_3 \alpha_4$
= $(\alpha_1 - \alpha_4)(\alpha_3 - \alpha_2)$

If f [separable](#page-29-1) then $\alpha_1, \ldots, \alpha_4$ are distinct, hence $\beta_1 \neq \beta_2$. Similar calculation shows $\beta_1, \beta_2, \beta_3$ are all distinct. Hence g is [separable.](#page-29-1)

(iii)Let M be a [splitting field](#page-17-0) of f over K. Let $\alpha_1, \ldots, \alpha_4 \in M$ be the roots of f. Then $L := K(\beta_1, \beta_2, \beta_3) \subset M$ is a [splitting field](#page-17-0) for g over K. If an element of Gal (M/K) permutes $\alpha_1, \ldots, \alpha_4$ according to $\sigma \in S_4$, then it restricts to an element of Gal (L/K) (L/K) (L/K) permuting $\beta_1, \beta_2, \beta_3$ according to $\pi(\sigma) \in S_3$. In other words, there is a commutative diagram

$$
\text{Gal}(M/K) \xrightarrow{\text{res}} \text{Gal}(L/K)
$$

$$
\downarrow^{\iota_4} \qquad \qquad \downarrow^{\iota_3}
$$

$$
S_4 \xrightarrow{\pi} S_3
$$

By [Theorem 6.4\(](#page-37-2)c), the map res : Gal $(M/K) \to$ Gal (L/K) (L/K) (L/K) is surjective. Therefore $\pi(\text{Im } \iota_4) = \text{Im } \iota_3$. Therefore $\pi(\text{Gal}(f/K)) = \text{Gal}(g/K)$ $\pi(\text{Gal}(f/K)) = \text{Gal}(g/K)$ $\pi(\text{Gal}(f/K)) = \text{Gal}(g/K)$. \Box

Proposition 9.4. Let f be a monic quartic polynomial with [resolvent cubic](#page-55-0) g. Then (i) $\text{Disc}(f) = \text{Disc}(g)$. (ii) If $f(X) = X^4 + pX^2 + qX + r$ then $g(X) = X^3 - 2pX^2 + (p^2 - 4r)X + q^2$

Proof.

- (i) Exercise (see proof of [Theorem 9.3\(](#page-56-0)ii)).
- (ii) We must show

$$
\beta_1 + \beta_2 + \beta_3 = 2p
$$

\n
$$
\beta_1 \beta_2 + \beta_2 \beta_3 = p^2 - 4r
$$

\n
$$
\beta_1 \beta_2 \beta_3 = -q^2
$$
\n(1)

We have $\beta_1 + \beta_2 + \beta_3 = 2\sum_{i < j} \alpha_i \alpha_j = 2p$, which proves (1). Since $\alpha_1 + \alpha_2 + \beta_3 = 2\sum_{i < j} \alpha_i \alpha_j$ $\alpha_3 + \alpha_4 = 0$, we have

$$
\begin{cases}\n\beta_1 = -(\alpha_1 + \alpha_2)^2 \\
\beta_2 = -(\alpha_1 + \alpha_3)^2 \\
\beta_3 = -(\alpha_1 + \alpha_4)^2\n\end{cases} (*)
$$

$$
(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_1 + \alpha_4) = \alpha_1^2(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4) + \sum_{i < j < k} \alpha_i \alpha_j \alpha_k
$$

Therefore $\beta_1\beta_2\beta_3 = -q^2$, which proves (3). (2) is left as an exercise.

Example. $f(X) = X^4 - 4X^2 + 2$. Irreducible in $\mathbb{Q}[X]$ by Eisenstein (p = 2) and Gauss' Lemma. $g(X) = X(X^2 + 8X + 8)$.

 $Disc(f) = Disc(g) = 8^2 Disc(X^2 + 8X + 8) = 2^{11}$ $Disc(f) = Disc(g) = 8^2 Disc(X^2 + 8X + 8) = 2^{11}$ $Disc(f) = Disc(g) = 8^2 Disc(X^2 + 8X + 8) = 2^{11}$ $Disc(f) = Disc(g) = 8^2 Disc(X^2 + 8X + 8) = 2^{11}$

 $Gal(q/\mathbb{Q})=C_2 \implies Gal(f/\mathbb{Q})=C_4$ $Gal(q/\mathbb{Q})=C_2 \implies Gal(f/\mathbb{Q})=C_4$ or D_8 .

But $f(X) = (X^2 - 2 + \sqrt{2})(X^2 - 2 - \sqrt{2})$. Therefore [Gal\(](#page-53-0) f/\mathbb{Q}) \cap $A_4 = \mathbb{Z}$ $Gal(f/\mathbb{Q}(\sqrt{2}))$ $Gal(f/\mathbb{Q}(\sqrt{2}))$ is not a transitive subgroup of S_4 . Therefore $Gal(f/\mathbb{Q}) \cong C_4$ (compare with [Example 6.6\)](#page-40-1).

Now we find a formula for the roots of a quartic polynomial.

- (i) Replace $f(X)$ by $f(X+c)$ such that f has no X^3 term ($\implies \alpha_1+\alpha_2+\alpha_3+\alpha_4=$ 0).
- (ii) Find the roots of $\beta_1, \beta_2, \beta_3$ of the [resolvent cubic](#page-55-0) using the method of [Sec](#page-23-0)[tion 4](#page-23-0).
- By $(*)$ we have

$$
\alpha_1 = \frac{1}{2}(\sqrt{-\beta_1} + \sqrt{-\beta_2} + \sqrt{-\beta_3})
$$

where we choose square roots such that $\sqrt{-\beta_1}$ √ $-\beta_2$ √ $\overline{-\beta_3} = -q.$

Recall $\sigma \in S_n$ has cycle type (n_1, \ldots, n_r) if when written as a product of disjoint cycles, these cycles have lengths n_1, n_2, \ldots, n_r .

Lemma9.5. Let $f \in \mathbb{F}_p[X]$ $f \in \mathbb{F}_p[X]$ $f \in \mathbb{F}_p[X]$ be a [separable](#page-29-1) polynomial with irreducible factors of degrees n_1, \ldots, n_r $(n = \deg f = \sum n_i)$. Then $Gal(f/\mathbb{F}_p) \subset S_n$ $Gal(f/\mathbb{F}_p) \subset S_n$ is generated by a single element of cycle type (n_1, \ldots, n_r) . In particualr, $Gal(f/\mathbb{F}_p)$ $Gal(f/\mathbb{F}_p)$ is cyclic of order $lcm(n_1, \ldots, n_r).$

*Proof.*Let L be a [splitting field](#page-17-0) of f over \mathbb{F}_p . Let $\alpha_1, \ldots, \alpha_n$ be the roots of f in L. Then [Theorem 8.2](#page-51-0) implies that $G = \text{Gal}(L/\mathbb{F}_p)$ $G = \text{Gal}(L/\mathbb{F}_p)$ $G = \text{Gal}(L/\mathbb{F}_p)$ is cyclic generated by Frobenius $\phi: x \mapsto x^p$. Write $f = \prod_i f_i$, where $f_i \in \mathbb{F}_p[X]$ $f_i \in \mathbb{F}_p[X]$ $f_i \in \mathbb{F}_p[X]$ is irreducible of degree n_i . Since G permutes the roots of each f_i transitively, the action of ϕ on the roots of f_i is given by a single n_i cycle. \Box

Start of

[lecture 18](https://notes.ggim.me/Galois#lecturelink.18)

Theorem 9.6 ("Reduction modulo p"). Let $f \in \mathbb{Z}[X]$ $f \in \mathbb{Z}[X]$ $f \in \mathbb{Z}[X]$ be a monic [separable](#page-29-1) polynomial of degree $n \geq 1$. Let p be a prime and suppose the reduction of f modulo p, say $\overline{f} \in \mathbb{F}_p[X]$ is also [separable.](#page-29-1) Then $Gal(\overline{f}/\mathbb{F}_p) \subset Gal(f/\mathbb{Q})$ $Gal(\overline{f}/\mathbb{F}_p) \subset Gal(f/\mathbb{Q})$ as subgroups of S_N (up to conjugacy).

Proof (non-examinable). See below.

Corollary 9.7. With the same assumptions, suppose $\overline{f} = g_1 g_2 \cdots g_r$ $\overline{f} = g_1 g_2 \cdots g_r$ $\overline{f} = g_1 g_2 \cdots g_r$ where $g_i \in$ $\mathbb{F}_p[X]$ $\mathbb{F}_p[X]$ $\mathbb{F}_p[X]$ is irreducible of degree n_i . Then $Gal(f/\mathbb{Q})\subset S_n$ $Gal(f/\mathbb{Q})\subset S_n$ contains an element with cycle type (n_1, n_2, \ldots, n_r) .

Proof. Combine [Lemma 9.5](#page-58-0) and [Theorem 9.6.](#page-59-1)

Example. $f(X) = X^4 - 3X + 1$ $f(X) = X^4 - 3X + 1$ $f(X) = X^4 - 3X + 1$ $f(X) = X^4 - 3X + 1$. Modulo 2, $\overline{f} = X^4 + X + 1 \in \mathbb{F}_2[X]$ is irreducible. Modulo 5, $\overline{f} = (X+1)(X^3 - X^2 + X + 1)$ $\overline{f} = (X+1)(X^3 - X^2 + X + 1)$ $\overline{f} = (X+1)(X^3 - X^2 + X + 1)$ (noting that the second factor is irreducible in $\mathbb{F}_5[X]$ $\mathbb{F}_5[X]$ $\mathbb{F}_5[X]$). Therefore [Gal\(](#page-53-0) f/\mathbb{Q}) contains a 3-cycle and a 4-cycle. Hence Gal(f/\mathbb{Q}) = S_4 .

Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ be a monic [separable](#page-29-1) polynomial of degree n with [splitting field](#page-17-0) L and roots $\alpha_1, \ldots, \alpha_n \in L$. Let

$$
F(\tau_1, \dots, \tau_n, X) = \prod_{\sigma \in S_n} (X - (\alpha_1 T_{\sigma(1)} + \dots + \alpha_n T_{\sigma(n)}))
$$

$$
\in K[T_1, \dots, T_n, X]
$$

Indeed, the coefficients of this polynomial are in L , and are fixed by $Gal(L/K)$ $Gal(L/K)$ $Gal(L/K)$ hence are in K.

We define an action $*$ of S_n on $K[T_1, \ldots, T_n, X]$ by permuting the T_i , i.e.

$$
(\sigma * h)(T_1, \ldots, T_n, X) = h(T_{\sigma(1)}, \ldots, T_{\sigma(n)}, X)
$$

We note that $\sigma * F = F$ for all $\sigma \in S_n$.

Lemma 9.8. Let $F_1 \in K[T_1, \ldots, T_n, X]$ be an irreducible factor of F. Then $Gal(f/K) \subset S_n$ $Gal(f/K) \subset S_n$ is conjugate to $Stab(F_1) = {\tau \in S_n \mid \tau * F_1 = F_1}.$

 \Box

Proof. Without loss of generality F_1 is monic in X. Replacing F_1 by $\tau * F_1$ for suitable $\tau \in S_n$ we may suppose it has a factor

$$
X - (\alpha_1 T_1 + \cdots + \alpha_n T_n).
$$

Then for each $\sigma \in G = \text{Gal}(f/K)$, it had a factor

$$
X - (\alpha_{\sigma(1)} T_1 + \cdots \alpha_{\sigma(n)} T_n)
$$

Now

$$
\prod_{\sigma \in G} (X - (\alpha_{\sigma(1)} T_1 + \dots + \alpha_{\sigma(n)} T_n))
$$

has coefficients in K, and divides F_1 , hence is equal to F_1 (sine F_1 irreducible and monic in X). For $\tau \in S_n$ we have

$$
\tau * F_1 = \prod_{\sigma \in G} (X - (\alpha_{\sigma(1)} T_{\tau(1)} + \dots + \alpha_{\sigma(n)} T_{\tau(n)}))
$$

=
$$
\prod_{\sigma \in G} (X - (\alpha_{\sigma\tau^{-1}(1)} T_1 + \dots + \alpha_{\sigma\tau^{-1}(n)} T_n))
$$

=
$$
\prod_{\sigma \in G\tau^{-1}} (X - (\alpha_{\sigma(1)} T_1 + \dots + \alpha_{\sigma(n)} T_n))
$$

So $\tau * F_1 = F_1$ if and only if $G = G\tau^{-1}$, which happens if and only if $\tau \in G$.

 \Box

Proof of ["Reduction modulo](#page-59-1) p*" (non-examinable).* By the [Symmetric Function Theorem](#page-24-0) the coefficients of F are Z-coefficient polynomials in the coefficients of f. So if $f \in \mathbb{Z}[X]$ $f \in \mathbb{Z}[X]$ $f \in \mathbb{Z}[X]$ then $F \in \mathbb{Z}[T_1,\ldots,T_n,X]$ $F \in \mathbb{Z}[T_1,\ldots,T_n,X]$ $F \in \mathbb{Z}[T_1,\ldots,T_n,X]$. Let $\overline{f} \in \mathbb{F}_p[X]$ and $\overline{F} \in \mathbb{F}_p[T_1,\ldots,T_n,X]$ be the polynomials obtained by reducing all coe[f](#page-59-0)ficients modulo p. We may equally construct \overline{F} \overline{F} \overline{F} from \overline{f} in the same way we constructed F from f. Write $F = F_1F_2 \cdots F_s$, $F_i \in \mathbb{Z}[T_1, \ldots, T_n, X]$ distrinct irreducibles (also irreducible in $\mathbb{Q}[T_1,\ldots,T_n,X]$). Let $\overline{F} = \phi_1 \phi_2 \cdots \phi_t$ $\overline{F} = \phi_1 \phi_2 \cdots \phi_t$ $\overline{F} = \phi_1 \phi_2 \cdots \phi_t$, $\phi_i \in$ $\mathbb{F}_p[T_1,\ldots,T_n,X]$ $\mathbb{F}_p[T_1,\ldots,T_n,X]$ $\mathbb{F}_p[T_1,\ldots,T_n,X]$ distinct irreducibles. Without loss of generality $\phi_1 \mid \overline{F_1}$ (hence $\phi_1 \nmid \overline{F_j}$ for all $j > 1$). Then

$$
\{\tau \in S_n \mid \tau * \phi_1 = \phi_1\} \subset \{\tau \in S_n \mid \tau * F_1 = F_1\}.
$$

[Lemma 9.8](#page-59-2) shows that up to conjugacy,

$$
Gal(\overline{f}/\mathbb{F}_p) \subset Gal(f/\mathbb{Q}).
$$

10 Cyclotomic and Kummer extensions

LetK be a [field,](#page-3-2) and $n \ge 1$ an integer. We suppose [char](#page-3-3) $K \nmid n$ (i.e. either char $K = 0$, or [char](#page-3-3) $K = p > 0$ and $p \nmid n$. Let L/K be a [splitting field](#page-17-0) of $f(X) = X^n - 1$. Since $f'(X) = nX^{n-1}$ and $n \cdot 1_K \neq 0$ $n \cdot 1_K \neq 0$ we have $gcd(f, f') = 1$ and so f is [separable.](#page-29-1) By [Theorem 6.2,](#page-36-0) L/K is [Galois.](#page-34-1) Let $\mu_n = \{x \in L \mid x^n = 1\}$ be the group of *n*-th roots of unity. This is a subgroup of L^* L^* of order n (since f splits into distinct linear factors over L) and is cyclic by [Proposition 1.3.](#page-5-1)

Definition. $\zeta_n \in \mu_n$ is a *primitive n*-*th root of unity* if it has order exactly *n* in L^* L^* .

Example. If $K \subset \mathbb{C}$ then we can take $\zeta_n = e^{2\pi i/n}$.

Then

$$
\mu_n = \langle \zeta_n \rangle = \{1, \zeta_n, \zeta_n^2, \dots, \zeta_n^{n-1}\}
$$

and

$$
L=K(1,\zeta_n,\zeta_n^2,\ldots,\zeta_n^{n-1})=K(\zeta_n).
$$

Definition. $K(\zeta_n)/K$ $K(\zeta_n)/K$ $K(\zeta_n)/K$ is called a *cyclotomic extension*.

Next time: we show

 $Gal(K(\zeta_n)/K) \subset (\mathbb{Z}/n\mathbb{Z})^*$ $Gal(K(\zeta_n)/K) \subset (\mathbb{Z}/n\mathbb{Z})^*$.

(with equality when $K = \mathbb{Q}$).

Start of

[lecture 19](https://notes.ggim.me/Galois#lecturelink.19) Recall that $(\mathbb{Z}/n\mathbb{Z})^* = \{a \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(a,n) = 1\}$ $(\mathbb{Z}/n\mathbb{Z})^* = \{a \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(a,n) = 1\}$ $(\mathbb{Z}/n\mathbb{Z})^* = \{a \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(a,n) = 1\}$ is a group under multiplication. Ithas order $\phi(n)$ (Euler ϕ -function). Let K be a [field](#page-3-2) with [char](#page-3-3) K $\nmid n$. Let ζ_n be a primitive *n*[-th root of unity](#page-61-1) (in some [field extension](#page-3-4) of K).

Theorem 10.1. There is an injective group homomorphism

 $Gal(K(\zeta_n)/K) \stackrel{\chi}{\hookrightarrow} (\mathbb{Z}/n\mathbb{Z})^*$ $Gal(K(\zeta_n)/K) \stackrel{\chi}{\hookrightarrow} (\mathbb{Z}/n\mathbb{Z})^*$.

In particular Gal $(K(\zeta_n)/K)$ $(K(\zeta_n)/K)$ $(K(\zeta_n)/K)$ $(K(\zeta_n)/K)$ $(K(\zeta_n)/K)$ is abelian, and $[K(\zeta_n):K]$ divides $\phi(n)$.

Proof. Let $G = \text{Gal}(K(\zeta_n)/K)$ $G = \text{Gal}(K(\zeta_n)/K)$ $G = \text{Gal}(K(\zeta_n)/K)$ $G = \text{Gal}(K(\zeta_n)/K)$ $G = \text{Gal}(K(\zeta_n)/K)$. If $\sigma \in G$ then ζ_n and hence also $\sigma(\zeta_n)$ are roots of $X^n - 1$. Therefore $\sigma(\zeta_n) = \zeta_n^a$ for some $a \in \mathbb{Z}$. Since ζ_n is a primitive *n*[-th root of unity](#page-61-1)

the value of a is unique modulo n . We define

$$
\chi: G \to \mathbb{Z}/n\mathbb{Z}
$$

$$
\sigma \mapsto a
$$

Noe let $\sigma, \tau \in G$ with $\sigma(\zeta_n) = \zeta_n^a$, $\tau(\zeta_n) = \zeta_n^b$. Then

$$
\sigma\tau(\zeta_n)=\sigma(\zeta_n^b)=\zeta_n^{ab},
$$

so

$$
\chi(\sigma\tau) = ab = \chi(\sigma)\chi(\tau).
$$

In particular $\chi(\sigma)\chi(\sigma^{-1}) = \chi(1) = 1$ so $\chi(\sigma) \in (\mathbb{Z}/n\mathbb{Z})^*$ $\chi(\sigma) \in (\mathbb{Z}/n\mathbb{Z})^*$ $\chi(\sigma) \in (\mathbb{Z}/n\mathbb{Z})^*$ and χ is a group homomorphism. Since any $\sigma \in G$ is uniquely determined by $\sigma(\zeta_n)$ it is clear that χ is injective. \Box

Remark. If $\chi(\sigma) = a$ then $\sigma(\zeta) = \zeta^a$ for all $\zeta \in \mu_n$. So the definition of χ does not depend on the choice of ζ_n .

Example. Let p be a prime with $p \equiv 4 \pmod{5}$. Let $K = \mathbb{F}_p$ $K = \mathbb{F}_p$ $K = \mathbb{F}_p$, $L = \mathbb{F}_{p^2}$ and $n = 5$. Since 5 | (p^2-1) , there exists $\zeta_5 \in L$ a primitive 5-th root of unity. Since $5 \nmid (p-1)$ we know $\zeta_5 \notin K$. Therefore $L = K(\zeta_5)$. By [Theorem 10.1](#page-61-4)

$$
\underbrace{\mathrm{Gal}(L/K)}_{\cong C_2} \xrightarrow{\chi} (\mathbb{Z}/5\mathbb{Z})^*.
$$

Therefore $\text{Im}(\chi) = {\pm 1} \subset (\mathbb{Z}/5\mathbb{Z})^*$ $\text{Im}(\chi) = {\pm 1} \subset (\mathbb{Z}/5\mathbb{Z})^*$ $\text{Im}(\chi) = {\pm 1} \subset (\mathbb{Z}/5\mathbb{Z})^*$.

Corollary 10.2. Let $K = \mathbb{F}_p$ $K = \mathbb{F}_p$ and suppose $p \nmid n$. Then $[K(\zeta_n): K]$ is the order of p in $(\mathbb{Z}/n\mathbb{Z})^*$ $(\mathbb{Z}/n\mathbb{Z})^*$ $(\mathbb{Z}/n\mathbb{Z})^*$.

Proof. [Gal\(](#page-37-0) $K(\zeta_n)/K$ $K(\zeta_n)/K$ $K(\zeta_n)/K$) is generated by [Frobenius homomorphism](#page-5-4) ϕ which sends $\zeta_n \mapsto \zeta_n^p$. Therefore

$$
[K(\zeta_n) : K] = \text{order of } \phi \text{ in } \text{Gal}(K(\zeta_n)/K)
$$

= order of $\chi(\phi)$ in $(\mathbb{Z}/n\mathbb{Z})^*$

Definition (Cyclotomic polynomial). Let $\zeta_n = e^{2\pi i/n}$. The *n*-th *cyclotomic polynomial* is

$$
\Phi_n(X) = \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^*} (X - \zeta_n^a).
$$

Its roots are the primitive n[-roots of unity.](#page-61-1) As $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ permutes these, we have $\Phi_n \in \mathbb{Q}[X]$ $\Phi_n \in \mathbb{Q}[X]$ $\Phi_n \in \mathbb{Q}[X]$. Clearly we have $\zeta^n = 1$ if and only if ζ is a primitive *n*[-th root of unity](#page-61-1) for some $d | n$. Therefore

$$
X^n - 1 = \prod_{d|n} \Phi_d(X).
$$

It follows by induction on n that $\Phi_n \in \mathbb{Z}[X]$ $\Phi_n \in \mathbb{Z}[X]$ $\Phi_n \in \mathbb{Z}[X]$.

Example.

 $\Phi_1 = X - 1$ $\Phi_p =$ X^p-1 $\frac{X^2 - 1}{X - 1} = X^{p-1} + X^{p-2} + \dots + X^2 + X + 1$ (p prime) $\Phi_4 = X^2 + 1$

In general, deg $\Phi_n = \phi(n)$.

Theorem 10.3. If $K = \mathbb{Q}$ then the group homomorphism χ of is an isomorphism. In particular, $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$ $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$ $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$, and $\Phi_n \in \mathbb{Q}[X]$ $\Phi_n \in \mathbb{Q}[X]$ $\Phi_n \in \mathbb{Q}[X]$ is irreducible.

Proof. Let p be a prime with $p \nmid n$. We show that Im χ contains p mod n. If this is true then Im χ contains a mod n for every a coprime to n (by considering the prime factorisation fo a). Therefore χ is surjective as required. Let $f, g \in \mathbb{Q}[X]$ $f, g \in \mathbb{Q}[X]$ $f, g \in \mathbb{Q}[X]$ be the [min](#page-7-0)[imal polynomials](#page-7-0) of ζ_n and ζ_n^p over Q. If $f = g$ then by [Lemma 9.1](#page-53-1) there exists $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ with $\sigma(\zeta_n) = \zeta_n^p$ as required. If not then f, g are distinct irreducibles dividing $X^n - 1$ $X^n - 1$. So $f, g \in \mathbb{Z}[X]$ (using Gauss' lemma) and $fg | (X^n - 1)$. Now ζ_n is a root of $g(X^p)$, so $f(X) | g(X^p)$. Reducing modulo p gives

$$
\overline{f}(X) | \overline{g}(X^p) = \overline{g}(X)^p.
$$

Both \overline{f} \overline{f} \overline{f} and \overline{g} \overline{g} \overline{g} divide the [separable](#page-29-1) polynomial $X^n - 1 \in \mathbb{F}_p[X]$ $X^n - 1 \in \mathbb{F}_p[X]$, so $\overline{f}(X) \mid \overline{g}(X)$. Hence

$$
\overline{f}(X)^2 | \overline{f}(X)\overline{g}(X) | (X^n - 1)
$$

which contradicts the fact that $X^n - 1 \in \mathbb{F}_p[X]$ $X^n - 1 \in \mathbb{F}_p[X]$ is [separable.](#page-29-1)

Theorem10.4 (Gauss). Let $n \geq 3$. A regular *n*-gon is [constructible by ruler and](#page-13-1) [compass](#page-13-1) if and only if $\phi(n)$ is a power of 2.

Proof. Let $\zeta_n = e^{2\pi i/n}$ and $\alpha = \zeta_n + \zeta_n^{-1} = 2\cos\left(\frac{2\pi}{n}\right)$ $\frac{2\pi}{n}$). Since $\alpha \in \mathbb{R}$, $\zeta \notin \mathbb{R}$ and ζ_n is a root of $X^2 - \alpha X + 1 \in \mathbb{Q}(\alpha)[X]$ $X^2 - \alpha X + 1 \in \mathbb{Q}(\alpha)[X]$. We have $[\mathbb{Q}(\zeta_n) : \mathbb{Q}(\alpha)] = 2$. If a regular *n*-gon can be [constructed](#page-13-2) then α is [constructible.](#page-13-3) Now [Corollary 2.2](#page-14-0) implies that $[\mathbb{Q}(\alpha):\mathbb{Q}]$ is a power of 2. By [Theorem 10.3,](#page-63-1) $\phi(n) = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] = 2[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $\phi(n) = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] = 2[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $\phi(n) = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] = 2[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $\phi(n) = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] = 2[\mathbb{Q}(\alpha) : \mathbb{Q}]$ $\phi(n) = [\mathbb{Q}(\zeta_n) : \mathbb{Q}] = 2[\mathbb{Q}(\alpha) : \mathbb{Q}]$ is a power of 2. For the converse we use the converse of [Theorem 2.1](#page-13-4) (proof omitted). It remains to show that if $\phi(n)$ is a power of 2 there there exist fields

$$
\mathbb{Q} = K_m \subset K_{m-1} \subset \cdots \subset K_1 \subset K_0 = \mathbb{Q}(\zeta_n)
$$

where $[K_i: K_{i+1}] = 2$ $[K_i: K_{i+1}] = 2$ $[K_i: K_{i+1}] = 2$ for all i and $K_1 = \mathbb{Q}(\alpha)$. By the [Fundamental Theorem of Galois](#page-37-2) [Theory,](#page-37-2) it suffices to construct subgroups

$$
\{1\} = H_0 \subset H_1 \subset \cdots \subset H_{m-1} \subset H_m = (\mathbb{Z}/n\mathbb{Z})^*
$$

where $(H_i: H_{i-1}) = 2$ for all i, and $H_1 = \{\pm 1\}$. We must show that if $G = (\mathbb{Z}/n\mathbb{Z})^*$ $G = (\mathbb{Z}/n\mathbb{Z})^*$ $G = (\mathbb{Z}/n\mathbb{Z})^*$ is an abelian group with order a power of 2 then there exist subgroups $\{1\} = H_0 \subset$ $H_1 \subset H_2 \subset \cdots \subset H_m = G$ such that $(H_i : H_{i-1}) = 2$ for all i. Assuming H_0, H_1, \ldots, H_j have been constructed, and $H_j \neq G$, we note that G/H_j has order a power of 2 hence contains an element gH_i of order 2. Then set $H_{i+1} = \langle H_i , g \rangle$ and repeat. \Box

Start of

[lecture 20](https://notes.ggim.me/Galois#lecturelink.20)**Corollary.** A regular *n*-hon is [constructible by ruler and compass](#page-13-1) if and only if *n* is a power of 2 and distinct primes of the form $F_k = 2^{2^k} + 1$.

Proof. If $n = \prod_i p_i^{\alpha_i}$ then

$$
\phi(n) = \prod_i p_i^{\alpha_i - 1}(p_i - 1)
$$

so $\phi(n)$ is a power of 2 if and only if n is a product of a power of 2 and distinct odd primes of the form $2^m + 1$. If $2^m + 1$ is prime then m must be a power of 2. Indeed if $m = ab$ with $b > 1$ odd, then putting $x = 2^a$ in

$$
x^{b} + 1 = (x + 1)(x^{b-1} - x^{b-2} + \dots - x + 1)
$$

gives a non-trivial factorisation.

$$
\begin{array}{c|cccc}\nk & 0 & 1 & 2 & 3 & 4 \\
\hline\nF_k = 2^{2^k} + 1 & 3 & 5 & 17 & 257 & 65537\n\end{array}
$$

 F_0, \ldots, F_4 are all prime. This prompted Fermat to guess that all the F_k might be prime. However in 1732 Euler showed that

$$
F_5 = 641 \times 6700417.
$$

Since then many other Fermat numbers have been proved composite and no more have been shown to be prime.

Theorem 10.5 (Linear independence of field embeddings)**.** Let K, L be [fields](#page-3-2) and $\sigma_1, \ldots, \sigma_n : K \hookrightarrow L$ distinct [field](#page-3-2) [embeddings](#page-4-1) $(n \geq 1)$. If $\lambda_1, \ldots, \lambda_n \in L$ satisfy

 $\lambda_1 \sigma_1(x) + \cdots + \lambda_n \sigma_n(x) = 0 \qquad \forall x \in K$

then $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Proof. Induction on n. Trivially true for $n = 1$. Now suppose $n \geq 2$ and

$$
\lambda_1 \sigma_1(x) + \dots + \lambda_n \sigma_n(x) = 0 \qquad \forall x \in K. \tag{1}
$$

Pick $y \in K$ such that $\sigma_1(y) \neq \sigma_2(y)$. Replacing x by xy in [\(1\)](#page-65-0) gives

$$
\lambda_1 \sigma_1(x)\sigma_1(y) + \dots + \lambda_n \sigma_n(x)\sigma_n(y) = 0 \qquad \forall x \in K
$$
 (2)

Taking $\sigma_1(y) \times (1) - (2)$ gives a new relation with only $n-1$ terms. It must be trivial by the induction hypothesis. Therefore $\sigma_1(y)\lambda_i = \sigma_i(y)\lambda_i$ for all $2 \leq i \leq n$. Since $\sigma_1(y) \neq \sigma_2(y)$ we have $\lambda_2 = 0$. Therefore [\(1\)](#page-65-0) has only $n-1$ terms, so the induction hypothesis tells us that all $\lambda_i = 0$. \Box

10.1 Kummer Theory

We continue to assume [char](#page-3-3) $K \nmid n$, but now further assume that $\mu_n \subset K$, i.e. K contains a primitive *n*[-th root of unity](#page-61-1) ζ_n .

Let $\alpha \in K^*$ $\alpha \in K^*$ $\alpha \in K^*$. Let L/K be a [splitting field](#page-17-0) of $f(X) = X^n - a$. Since $f'(X) = nX^{n-1}$ and $n1_K \neq 0$ $n1_K \neq 0$ we have $gcd(f, f') = 1$, so f is [separable](#page-29-1) by [Theorem 6.2](#page-36-0) L/K is [Galois.](#page-34-1)

Let $\alpha \in L$ be a root of f. Then

$$
f(X) = \prod_{j=0}^{n-1} (X - \zeta_n^j \alpha)
$$

Therefore $L = K(\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha) = K(\alpha)$ $L = K(\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha) = K(\alpha)$ $L = K(\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha) = K(\alpha)$. We sometimes write $\sqrt[n]{\alpha}$ for α .

Definition ([K](#page-6-0)ummer extension). $K(\sqrt[n]{\alpha})/K$ $K(\sqrt[n]{\alpha})/K$ is called a *Kummer extension*.

Theorem 10.6. Assume $\mu_n \subset K$ $\mu_n \subset K$ and $a \in K^*$. There is an injective group homomorphism

$$
\mathrm{Gal}((\sqrt[n]{a})/K) \underset{\theta}{\hookrightarrow} \mu_n
$$

In [p](#page-6-0)articular Gal $(K(\sqrt[n]{a})/K)$ $(K(\sqrt[n]{a})/K)$ $(K(\sqrt[n]{a})/K)$ $(K(\sqrt[n]{a})/K)$ $(K(\sqrt[n]{a})/K)$ is a cyclic group and $[K(\sqrt[n]{a})]: K]$ divides n.

Proof. Let $G = \text{Gal}(K(\sqrt[n]{a})/K)$ $G = \text{Gal}(K(\sqrt[n]{a})/K)$ $G = \text{Gal}(K(\sqrt[n]{a})/K)$ $G = \text{Gal}(K(\sqrt[n]{a})/K)$ $G = \text{Gal}(K(\sqrt[n]{a})/K)$. If $\sigma \in G$ then $\sqrt[n]{a}$ and hence also $\sigma(\sqrt[n]{a})$ are roots of *Xn* – a, so $\sigma(\sqrt[n]{a}) = \zeta_n^r \sqrt[n]{a}$ for some $0 \le r < n$. We define

$$
\theta: G \to \mu_n
$$

$$
\sigma \mapsto \zeta_n^r = \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}
$$

Now let $\sigma, \tau \in G$. Then

$$
\sigma(\sqrt[n]{a}) = \zeta_n^r \sqrt[n]{a}
$$

$$
\tau(\sqrt[n]{a}) = \zeta_n^s \sqrt[n]{a}
$$

Then

$$
\sigma\tau(\sqrt[n]{\alpha}) = \sigma(\zeta_n^s \sqrt[n]{a}) = \zeta_n^{r+s} \sqrt[n]{a}
$$

So $\theta(\sigma\tau) = \zeta^{r+s} = \zeta_n^r \zeta_n^s = \theta(\sigma)\theta(\tau)$. Therefore θ is a group homomorphism. Since any $\sigma \in G$ is uniquely determined by $\sigma(\sqrt[n]{a})$, it is clear that θ is injective. \Box

Remark. The definition of θ does not depend on the choice of $\sqrt[n]{a}$. Indeed if $\alpha^n = \beta^n = a$, then

$$
\left(\frac{\alpha}{\beta}\right)^n = 1 \implies \frac{\alpha}{\beta} \in \mu_n \subset K
$$

$$
\implies \sigma\left(\frac{\alpha}{\beta}\right) = \frac{\alpha}{\beta} \qquad \forall \sigma \in G
$$

$$
\implies \frac{\sigma(\alpha)}{\alpha} = \frac{\sigma(\beta)}{\beta} \qquad \forall \sigma \in G
$$

Notation.

$$
(K^*)^n = \{x^n : x \in K^*\} \subset K^*.
$$

This is a subgroup since K^* K^* is abelian.

Corollary 10.7. Assume $\mu_n \subset K$ $\mu_n \subset K$ and $a \in K^*$. Then

$$
[K(\sqrt[n]{a}):K] = \text{order of } a \text{ in } \frac{K^*}{(K^*)^n}.
$$

In particular $X^n - a$ is irreducible in $K[X]$ $K[X]$ if and only if a is not an a-th power in K for any $1 < d \mid n$.

Proof. Let $\alpha = \sqrt[n]{a}$ and $G = \text{Gal}(K(\alpha)/K)$ $G = \text{Gal}(K(\alpha)/K)$ $G = \text{Gal}(K(\alpha)/K)$ $G = \text{Gal}(K(\alpha)/K)$ $G = \text{Gal}(K(\alpha)/K)$.

$$
a^{m} \in (K^{*})^{n} \iff a^{m} \in K^{*}
$$
 (using $\mu_{n} \subset K$)
\n
$$
\iff \sigma(\alpha^{m}) = \alpha^{m}
$$

\n
$$
\iff \theta(\sigma)^{m} = 1
$$

\n
$$
\iff \text{Im }\theta \subset \mu_{m}
$$

\n
$$
\iff [K(\alpha) : K] = \# \text{Im}(\theta) \text{ divides } m
$$

Therefore $[K(\alpha): K]$ $[K(\alpha): K]$ $[K(\alpha): K]$ is the least m such that $a^m \in (K^*)^n$. Now:

$$
X^{n} - a
$$
 is irreducible in $K[X] \iff [K(\alpha) : K] = n$

$$
\iff a
$$
 has order n in $\frac{K^{*}}{(K^{*})^{n}}$

$$
\iff \nexists m \mid n, m < n
$$
 such that $a^{m} \in (K^{*})^{n}$

$$
\iff \nexists 1 < d \mid n \text{ with } a \in (K^{*})^{d}
$$

(the last \iff is by putting $n = md$ and use that $\mu_n \subset K$).

Special case: $n = 2$, [char](#page-3-3) $K \neq 2$ $K \neq 2$. Then $[K(\sqrt{a}) : K] = 2$ $[K(\sqrt{a}) : K] = 2$ $[K(\sqrt{a}) : K] = 2$ provided $a \notin (K^*)^2$.

Start of

[lecture 21](https://notes.ggim.me/Galois#lecturelink.21) **Theorem 10.8** (Kummer). Assume [char](#page-3-3) $K \nmid n$ and $\mu_n \subset K$. Then every [degree](#page-4-0) n [Galois](#page-34-1) [extension](#page-3-1) L/K with cyclic [Galois group](#page-37-3) is of the form $L = K(\sqrt[n]{a})$ $L = K(\sqrt[n]{a})$ $L = K(\sqrt[n]{a})$ for some $a \in K^*$ $a \in K^*$ $a \in K^*$.

> *Proof.* Write Gal $(L/K) = {\sigma^i : 0 \le i < n}$ $(L/K) = {\sigma^i : 0 \le i < n}$ $(L/K) = {\sigma^i : 0 \le i < n}$. By [Theorem 10.5,](#page-65-2) there exists $x \in L$ such that

$$
\underbrace{\sum_{j=0}^{n-1} \zeta_n^j \sigma^{j(x)}}_{=\alpha} \neq 0
$$

$$
\qquad \qquad \Box
$$

(Lagrange resolvent). Then

$$
\sigma(\alpha) = \sum_{j=0}^{n-1} \zeta_n^j \sigma^{j+1}(x) = \sum_{j=0}^{n-1} \zeta_n^{j-1} \sigma^j(x) = \zeta_n^{-1} \alpha
$$

The Galois conjugates $\sigma^{j}(\alpha) = \zeta_n^{-j} \alpha$. So $[K(\alpha) : K] = n$ and $L = K(\alpha)$. Finally $\sigma(\alpha^n) = (\zeta_n^{-1}\alpha)^n = \alpha^n$, so $\alpha^n \in K$. \Box

Nowlet K be a [field](#page-3-2) with [char](#page-3-3) $K = 0$ $K = 0$. Let $f \in K[X]$ be a polynomial.

Definition (Soluble by radicals)**.** f is *soluble by radicals* over K if there exist fields $K = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_m$

such that f has a root in K_m K_m and for each $1 \leq i \leq m$, $K_i = K_{i-1}(\alpha_i)$ with $\alpha_i^{d_i} \in K_{i-1}$ for some $d_i \geq 1$.

Definition (Soluble group)**.** A finite group G is *soluble* if there exist subgroups $\{1\} = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_m = G$

such that for each $1 \leq i \leq m$, $H_{i-1} \leq H_i$ and H_i/H_{i-1} is abelian.

Remark. The definition is unchanged if we replace "abelian" by "cyclic" or "cyclic" of prime order".

Example. S_4 is soluble: ${1} < V \subset A_4 \subset S_4$ with $V \cong C_2 \times C_2$, $A_4/V \cong C_3$, $S_4/A_4 \cong C_2$.

Lemma 10.9. If G is soluble then so is every subgroup and quotient of G.

Proof. Exercise [\(Example Sheet 4, Question 7\)](https://www.maths.cam.ac.uk/undergrad/examplesheets).

Theorem 10.10. Let $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ irreducible. Then

f is [soluble by radicals](#page-68-0) \iff Gal (f/K) is [soluble](#page-68-1)

Lemma10.11. Let L/K be a [finite](#page-4-0) [Galois](#page-34-1) [extension.](#page-3-1) Let

 $Gal(L/K) = {\sigma_1, \ldots, \sigma_m}$ $Gal(L/K) = {\sigma_1, \ldots, \sigma_m}$ $Gal(L/K) = {\sigma_1, \ldots, \sigma_m}$

(say $\sigma_1 = id$). [L](#page-5-3)et $a \in L^*$ and $n \geq 1$. Then

$$
M=L(\mu_n,\sqrt[n]{\sigma_1(a)},\ldots,\sqrt[n]{\sigma_m(a)})
$$

isa [Galois](#page-34-1) [extension](#page-3-1) of K.

Proof. Let

$$
f(X) = \prod_{i=1}^{m} (X^n - \sigma_i(a)) \in K[X]
$$

Then m is the [composite](#page-40-2) of L and the [splitting field](#page-17-0) of f over K. Therefore M/K is [Galois](#page-34-1) by [Theorem 6.7\(](#page-41-0)ii). \Box

Proof of [Theorem 10.10.](#page-69-0)

- \Rightarrow By definition there exist [fields](#page-3-2) $K = K_0 \subset K_1 \subset \cdots K_m$ such that f has a root in K_m and for each $1 \leq i \leq m$, $K_i = K_{i-1}(\alpha_i)$ with $\alpha_i^{d_i} \in K_{i-1}$ for some $d_i \geq 1$. Repeatedly applying [Lemma 10.11,](#page-69-1) we may assume K_m/K K_m/K is [Galois.](#page-34-1) By adjoining suitable [roots of unity](#page-61-1) first, we may further assume each K_i/K_{i-1} K_i/K_{i-1} K_i/K_{i-1} is either [cyclotomic](#page-61-5) or [Kummer.](#page-66-1) By [Theorem 10.1](#page-61-4) and [Theorem 10.6](#page-66-2) each Gal (K_i/K_{i-1}) (K_i/K_{i-1}) (K_i/K_{i-1}) is abelian. So by the [Fundamental Theorem of Galois Theory,](#page-37-2) $Gal(K_m/K)$ $Gal(K_m/K)$ $Gal(K_m/K)$ $Gal(K_m/K)$ is soluble. Since f has a root in K_m and K_m/K K_m/K is [normal,](#page-27-0) we know that f slpits in K_m . Therefore $Gal(f/K)$ $Gal(f/K)$ is a quotient of $Gal(K_m/K)$ $Gal(K_m/K)$ $Gal(K_m/K)$ $Gal(K_m/K)$, and hence $Gal(f/K)$ is [soluble](#page-68-1) by [Lemma 10.9.](#page-68-2)
- \Leftarrow By the here exists $K = K_0 \subset K_1 \subset \cdots \subset K_m$ such that f has a root in K_m and each K_i/K_{i-1} K_i/K_{i-1} K_i/K_{i-1} is [Galois](#page-34-1) with cyclic [Galois group.](#page-37-3) Let $n = \text{lcm}_{1 \leq i \leq m}[K_i : K_{i-1}]$ $n = \text{lcm}_{1 \leq i \leq m}[K_i : K_{i-1}]$ $n = \text{lcm}_{1 \leq i \leq m}[K_i : K_{i-1}]$. Then

$$
K = K_0 \subset K_0(\zeta_n) \subset K_1(\zeta_n) \subset \cdots \subset K_m(\zeta_n)
$$

By [Theorem 6.7\(](#page-41-0)i), $K_i(\zeta_n)/K_{i-1}(\zeta_n)$ $K_i(\zeta_n)/K_{i-1}(\zeta_n)$ $K_i(\zeta_n)/K_{i-1}(\zeta_n)$ $K_i(\zeta_n)/K_{i-1}(\zeta_n)$ is [Galois](#page-34-1) and

$$
Gal(K_i(\zeta_n)/K_{i-1}(\zeta_n)) \hookrightarrow Gal(K_i/K_{i-1})
$$

Therefore Gal $(K_i(\zeta_n)/K_{i-1}(\zeta_n))$ $(K_i(\zeta_n)/K_{i-1}(\zeta_n))$ $(K_i(\zeta_n)/K_{i-1}(\zeta_n))$ $(K_i(\zeta_n)/K_{i-1}(\zeta_n))$ $(K_i(\zeta_n)/K_{i-1}(\zeta_n))$ is cyclic of order dividing n.

Corollary 10.12. If $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ is a polynomial of degree $n \geq 5$ with [Galois group](#page-37-3) A_n or S_n , then f is *not* [soluble by radicals](#page-68-0) over K.

Proof. A_5 is non abelian and simple, hence not [soluble.](#page-68-1) By [Lemma 10.9,](#page-68-2) A_n and S_n are not soluble for all $n \geq 5$ (in fact A_n is simple for all $n \geq 5$). \Box

Example. $K = \mathbb{Q}$, $f(X) = X^5 - X + a$, with $a \in \mathbb{Z}$, $gcd(a, 10) = 1$. Then $f \equiv X^5 + X + 1 = (X^2 + X + 1)(X^3 + X^2 + 1)$ (mod 2).

Therefore [Gal\(](#page-53-0) f/\mathbb{Q}) contains an element σ with cycle type (2,3). Then σ^3 is a transposition.

Using the trick in [Example Sheet 4, Question 5,](https://www.maths.cam.ac.uk/undergrad/examplesheets) we [f](#page-59-0)ind $\overline{f} \in \mathbb{F}_5[X]$ is irreducible, hence Gal (f/\mathbb{Q}) contains a 5-cycle.

Now [Example Sheet 3, Question 7\(i\):](https://www.maths.cam.ac.uk/undergrad/examplesheets) Let p be a prime. If $G \subset S_p$ is a subgroup containing both a p-cycle and a transposition, then $G = S_p$. Therefore [Gal\(](#page-53-0) f/\mathbb{Q}) = S_5 and f is not [soluble by radicals.](#page-68-0)

Start of

[lecture 22](https://notes.ggim.me/Galois#lecturelink.22)

11 Algebraic Closure

Lemma (Zorn's Lemma)**.** Let S be a nonempty partially ordered set. Assume that every chain in S has an upper bound. Then S has a maximal element.

Definition. A relation \leq on a set S is a partial order if for all $x, y, z \in S$:

- (i) $x \leq x$.
- (ii) If $x \leq y$ and $y \leq z$ then $x \leq z$.
- (iii) If $x \leq y \leq z$ and $y \leq x$ then $x = y$.

 (S, \leq) is called a *partially ordered set* (or poset).

It is *totally ordered* if moreover for each $x, y \in S$

(iv) Either $x \leq y$ or $y \leq x$.

Let $T \subset S$ be a subset.

- • T is a *chain* if it is totally ordered by \leq .
- • $x \in S$ is an *upper bound* for T if $t \leq x$ for all $t \in T$.
- $x \in S$ is *maximal* if $\nexists y \in S$ with $x \leq y$ and $x \neq y$.

Example. Let V be a vector space and (S, \leq) be the set of linearly independent subsetsof V ordered by inclusion. If $T \subset S$ is a [chain](#page-71-0) then let $Y = \bigcup_{X \in T} X$. It may be checked that Y is linearly independent, hence an upper bound for T . [Zorn's](#page-71-1) [Lemma](#page-71-1)shows that S has a [maximal](#page-71-2) B . Then:

- (i) B is linearly independent.
- (ii) $B \cup \{v\}$ is not linearly independent for any $v \in V \setminus B$.
- (i) and (ii) \implies B spans V. Therefore B is a basis for V.
Example (Maximal ideal). Let R be a nonzero ring. Let (S, \leq) be the set of all proper (ie $\neq R$) ideals of R ordered by inclusion. R nonzero implies $\{0\} \in S$ so S isnonempty. If $T \subset S$ is a [chain](#page-71-0) then let $J = \bigcup_{I \in T} I$. If $x, y \in J$ then $x \in I_1$ and $y \in I_2$ for some $I_1, I_2 \in T$. Since T is [totally ordered,](#page-71-1) either $I_1 \subset I_2$ or $I_2 \subset I_1$. Therefore $x + y \in J$. Also, $r \in R$, $x \in J$ implies $rx \in J$. So J is an ideal in R. It is a proper ideal since $1 \notin J$. Therefore $J \in S$ is an upper bound for T. [Zorn's](#page-71-2) [Lemma](#page-71-2)shows that S has a [maximal,](#page-71-3) hence R has a maximal ideal.

Theorem 11.1 (Existence of algebraic closure)**.** Let K bea [field.](#page-3-0) Then

- (i) There is an [algebraic](#page-8-0) [extension](#page-3-1) L/K such that every nonconstant $f \in K[X]$ $f \in K[X]$ $f \in K[X]$ has a root in L.
- (ii) K has an [algebraic closure](#page-21-0) \overline{K} .

Proof.

(i) Let $S = \{\text{monic constant polynomials in } K[X]\}.$ $S = \{\text{monic constant polynomials in } K[X]\}.$ $S = \{\text{monic constant polynomials in } K[X]\}.$ Rough idea: $L = K(\alpha_f : f \in S)$ where α_f is a root of f.

In detail: Let $R = K[X_f : f \in S]$ $R = K[X_f : f \in S]$ $R = K[X_f : f \in S]$ be the polynomial ring in indeterminates $\{X_f : f \in S\}$. So elements of R are finite K-linear combinations of monomials of the form $X_{f_1}^{d_1}$ $\frac{d_1}{f_1}X_{f_2}^{d_2}$ $\frac{d_2}{f_2}\cdots X_{f_r}^{d_r}$ $\frac{d_r}{f_r}$ where $f_i \in S$ and $d_i \in \mathbb{N}$. Let $I \subset R$ be the ideal generated by $\{f(X_f) : f \in S\}.$

Claim: $I \neq R$.

Proof of claim: If not then $1 \in I$, i.e.

$$
1 = \sum_{f \in T} g_f f(X_f) \tag{*}
$$

forsome finite subset $T \subset S$ and polynomials $g_f \in R$. Let L/K be a [splitting](#page-17-0) [field](#page-17-0) for $\prod_{f \in T} f$ and for each $f \in T$, let $\alpha_f \in L$ be a root of f. We define a ring homomorphism

$$
\phi: R \to L[X_f : f \in S \setminus T]
$$

$$
X_f \mapsto \begin{cases} \alpha_f & f \in T \\ X_f & f \notin T \end{cases}
$$

$$
c \mapsto c \qquad \forall c \in K
$$

Applying ϕ to $(*)$ gives

$$
1 = \sum_{f \in T} \phi(g_f) \underbrace{f(\alpha_f)}_{=0} = 0
$$

which gives a contradiction. Hence $I \neq R$, which proves the claim.

Since $I \neq R$, by the earlier example [\(Maximal ideal\)](#page-72-1), we get that R/I has a maximal ideal, so equivalently R has a maximal ideal J containing I. Let $L = R/J$ and $\alpha_i = X_i + J \in L$. Then $f(\alpha_f) = 0$ (since $f(X_f) \in I \subset J$). Since

$$
L = \bigcup_{\substack{T \subset S \text{ finite} \\ \text{subsets}}} K(\alpha_f : f \in T)
$$

it follows that L/K is an [algebraic](#page-8-0) [extension.](#page-3-1)

(ii) Repeating the construction in (i) gives

$$
K \subset K_1 \subset K_2 \subset \cdots
$$

Each nonconstant polynomial in $K_n[X]$ $K_n[X]$ has a root in K_{n+1} . If $f \in K[X]$ has degree $n \geq 1$ then is has a root α_1 in K_1 . Then $\frac{f(X)}{X-\alpha_1}$ is either a constant, or a nonconstant polynomial, hence has a root α_2 in K_2 , and so on, so that f splits into linear factors in K_n . Let

$$
\overline{K} = \bigcup_{n \ge 1} K_n.
$$

This is a field since it is a union of fields [totally ordered](#page-71-1) by inclusion. Then every polynomial in $K[X]$ $K[X]$ splits into linear factors over \overline{K} , and each element of \overline{K} belongs tosome K_n , so is [algebraic](#page-8-0) over K. Now apply [Lemma 3.9.](#page-21-1) \Box

Start of

[lecture 23](https://notes.ggim.me/Galois#lecturelink.23) Now we want to prove uniqueness of [algebraic closures.](#page-21-0)

Proposition11.2. Let L/K be an [algebraic](#page-8-0) [extension](#page-3-1) and M/K be a [field exten](#page-3-3)[sion](#page-3-3) with M [algebraically closed.](#page-21-2) Then there exists a K[-embedding](#page-15-0) $L \hookrightarrow M$.

Proof. Let

 $S = \{(F, \sigma) : (\sigma : F \hookrightarrow M) \text{ a } K\text{-embedding}, K \subset F \subset L\},\$ $S = \{(F, \sigma) : (\sigma : F \hookrightarrow M) \text{ a } K\text{-embedding}, K \subset F \subset L\},\$ $S = \{(F, \sigma) : (\sigma : F \hookrightarrow M) \text{ a } K\text{-embedding}, K \subset F \subset L\},\$

with [partial order](#page-71-4) $(F_1, \sigma_1) \leq (F_2, \sigma_2)$ if $F_1 \subset F_2$ and $\sigma_2|_{F_1} = \sigma_1$. Then (S, \leq) is a [partially ordered set.](#page-71-5) It is non-empty as $(K, id) \in S$. Suppose $T = \{(F_i, \sigma_i) : i \in I\}$

isa [chain](#page-71-0) (where I is some indexing set). Let $F = \bigcup_{i \in I} F_i$ (a field since T is [totally](#page-71-1) [ordered](#page-71-1)). Define

$$
\sigma: F \to M
$$

$$
x \mapsto \sigma_i(x) \quad \text{if } x \in F_i
$$

This is well-defined since σ_i and σ_j agree on $F_i \cap F_j$ (again since T is [totally ordered\)](#page-71-1).

Then $(F, \sigma) \in S$ is an [upper bound](#page-71-6) for T. Hence by [Zorn's Lemma,](#page-71-2) S has a [maximal](#page-71-3) element (F, σ) .

Let $\alpha \in L$. Then α is [algebraic](#page-7-0) over K, hence algebraic over F. By [Theorem 3.4,](#page-17-1) we may extend $\sigma : F \hookrightarrow M$ $\sigma : F \hookrightarrow M$ $\sigma : F \hookrightarrow M$ to $\tau : F(\alpha) \hookrightarrow M$ (using here that M is [algebraically closed\)](#page-21-2). Then $(F, \sigma) \leq (F(\alpha), \tau)$ $(F, \sigma) \leq (F(\alpha), \tau)$ $(F, \sigma) \leq (F(\alpha), \tau)$. Since (F, σ) is [maximal,](#page-71-3) we must have $F(\alpha) = F$, so $\alpha \in F$. Therefore $F = L$ and $\sigma : L \hookrightarrow M$ is a K[-embedding](#page-15-0) as required. \Box

Corollary11.3 (Uniqueness of algebraic closure). Let K be a [field.](#page-3-0) Let L_1 and L_2 be [algebraic closure](#page-21-0) of K. Then there exists a K[-isomorphism](#page-15-0) $\phi: L_1 \overset{\sim}{\rightarrow} L_2$.

Note. ϕ is not necessarily unique.

*Proof.*Since L_1/K L_1/K is [algebraic](#page-8-0) and L_2/K is a [field extension](#page-3-3) with L_2 [algebraically](#page-21-2) [closed,](#page-21-2) [Proposition 11.2](#page-73-0) gives a K[-embedding](#page-15-0) $\phi: L_1 \hookrightarrow L_2$. Any $\alpha \in L_2$ is [algebraic](#page-7-0) over K, hence [algebraic](#page-7-0) over $\phi(L_1)$. But $\phi(L_1) \cong L_1$ is [algebraically closed,](#page-21-2) and therefore $\alpha \in \phi(L_1)$. This shows that ϕ is surjective. \Box

12 Artin's Theorem

Theorem12.1 (Artin's Theorem on Invariants). Let L be a [field](#page-3-0) and $G \subset Aut(L)$ $G \subset Aut(L)$ $G \subset Aut(L)$ afinite subgroup. Then L/L^G L/L^G L/L^G is a [finite](#page-4-0) [Galois](#page-34-2) [extension](#page-3-1) with [Galois group](#page-37-0) G. In particular,

$$
[L:L^G]=\#G.
$$

Remark. [L](#page-34-1)et $K = L^G$. Then $G \subset Aut(L/K)$ $G \subset Aut(L/K)$ $G \subset Aut(L/K)$ $G \subset Aut(L/K)$ and

$$
K \subset L^{\text{Aut}(L/K)} \subset L^G = K.
$$

Therefore $K = L^{\text{Aut}(L/K)}$ $K = L^{\text{Aut}(L/K)}$ $K = L^{\text{Aut}(L/K)}$. If we knew L/K is [algebraic,](#page-8-0) then it would follow (by definition) that L/K is [Galois.](#page-34-2) If moreover we knew L/K is [finite](#page-4-0) then

$$
L^G = L^{\text{Gal}(L/K)} \stackrel{\text{Theorem 6.4}}{\Longrightarrow} G = \text{Gal}(L/K).
$$

Proof. [L](#page-34-1)et $K = L^G$. Pick any $\alpha \in L$. Let

$$
f(X) = \prod_{i=1}^{m} (X - \alpha_i)
$$

where $\alpha_1, \ldots, \alpha_m$ are the distinct elements of $\text{orb}_G(\alpha) = {\sigma(\alpha) : \sigma \in G}$. Then $\sigma f = f$ for all $\sigma \in G$, hence $f \in K[X]$ $f \in K[X]$ $f \in K[X]$. Therefore α is [algebraic](#page-7-0) and [separable](#page-29-0) over K. Hence L/K is [algebraic](#page-8-0) and [separable](#page-29-1) and

$$
[K(\alpha):K] \leq #G \qquad \forall \alpha \in L.
$$

Now pick $\alpha \in L$ with $[K(\alpha):K]$ $[K(\alpha):K]$ $[K(\alpha):K]$ maximal.

Claim: $L = K(\alpha)$ $L = K(\alpha)$ $L = K(\alpha)$.

Proof of Claim: Let $\beta \in L$. Then $K(\alpha, \beta)/K$ $K(\alpha, \beta)/K$ is [finite](#page-4-0) and [separable](#page-29-1) so by [Theorem of](#page-30-0) [the Primitive Element](#page-30-0), $K(\alpha, \beta) = K(\theta)$ $K(\alpha, \beta) = K(\theta)$ for some $\theta \in L$. By our choice of α ,

$$
[K(\theta):K] \leq [K(\alpha):K].
$$

Since $K(\alpha) \subset K(\theta)$ $K(\alpha) \subset K(\theta)$, this gives $K(\alpha) = K(\theta)$ and hence $\beta \in K(\alpha)$. This proves the claim.

Now

$$
\# \operatorname{Aut}(L/K) \le [L:K] = [K(\alpha):K] \le \#G.
$$

Since $G \subset \text{Aut}(L/K)$ $G \subset \text{Aut}(L/K)$ $G \subset \text{Aut}(L/K)$, it follows that

$$
\#\operatorname{Aut}(L/K)=[L:K],
$$

so by [Theorem 6.2,](#page-36-0) L/K is [Galois](#page-34-2) and $G = \text{Aut}(L/K)$.

 \Box

Example. Let $L = \mathbb{C}(X_1, X_2)$ $L = \mathbb{C}(X_1, X_2)$ $L = \mathbb{C}(X_1, X_2)$. Define $\sigma, \tau \in \text{Aut}(L)$ by

$$
(\sigma f)(X_1, X_2) = f(iX_1, -iX_2) \n(\tau f)(X_1, X_2) = f(X_2, X_1)
$$

[L](#page-34-1)et $G = \langle \sigma, \tau \rangle \cong D_8$. Aim: compute L^G . We spot that $X_1 X_2, X_1^4 + X_2^4 \in L^G$. So we have:

Let

$$
f(T) = (T4 - X14)(T4 - X24) = T8 - (X14 + X24)T4 + (X1X2)4 \in \mathbb{C}(X1X2, X14 + X24)[T]
$$

hence

 $[L: \mathbb{C}(X_1X_2, X_1^4 + X_2^4)] \leq 8$ $[L: \mathbb{C}(X_1X_2, X_1^4 + X_2^4)] \leq 8$ $[L: \mathbb{C}(X_1X_2, X_1^4 + X_2^4)] \leq 8$

Then [Artin's Theorem on Invariants](#page-75-0) implies $[L : L^G] = \#G = 8$ $[L : L^G] = \#G = 8$ $[L : L^G] = \#G = 8$. Then by the [Tower](#page-5-0) [Law,](#page-5-0)

$$
L^G = \mathbb{C}(X_1X_2, X_1^4 + X_2^4).
$$

Start of

[lecture 24](https://notes.ggim.me/Galois#lecturelink.24) Let R be a ring and $G \subset Aut(R)$ $G \subset Aut(R)$ $G \subset Aut(R)$ a subgroup. *Invariant theory* seeks to describe the cubring $R^G = \{x \in R \mid \sigma(x) = x \,\forall \sigma \in G\}.$

> The topic was studied extensively in the 19th century and was the motivation for Hilbert's Basis Theorem. It is also important in modern algebraic geometry for describing the quotient of an algebraic variety by a group action.

> Let k be a field and $L = k(X_1, \ldots, X_n)$ be the field of rational functions in n variables, i.e. the field of fractions of $R = k[X_1, \ldots, X_n]$. Let $G = S_n$ act on L by permutating the X_i .

Aim: compute L^G L^G .

We note that L^G L^G contains the [elementary symmetric functions](#page-23-0) $s_1 = \sum_i X_i$ $s_1 = \sum_i X_i$ We note that L^G contain[s](#page-23-1) the elementary symmetric functions $s_1 = \sum_i X_i$, $s_2 = \sum_{i < j} X_i X_j$, ..., $s_n = \prod_i X_i$. By [Symmetric Function Theorem,](#page-24-0) $R^G = k[s_1, \ldots, s_n]$ $R^G = k[s_1, \ldots, s_n]$ and there are no polynomial relation[s](#page-23-1) satisfied by the s_i .

Theorem 12.2. $L^G = k(s_1, ..., s_n)$ $L^G = k(s_1, ..., s_n)$.

Proof 1. [L](#page-34-1)et $\frac{f}{g} \in L^G$, $f, g \in R$ coprime. Then $\frac{\sigma(f)}{\sigma(g)} = \frac{f}{g}$ $\frac{J}{g}$ for all $\sigma \in G$. Since R is a UFD and the units of R are just k^* k^* , we have $\sigma(f) = c_{\sigma} f$, $\sigma(g) = c_{\sigma} g$ for some $c_{\sigma} \in k^*$. But G has finite order, say $|G| = N$ (in fact = n!). Therefore $f = \sigma^N_{\mathcal{L}}(f) = c^N_{\sigma} f$ hence $c^N_{\sigma} = 1$. Therefore $fg^{N-1}, g^N \in R^G = k[s_1, \ldots, s_n]$ $fg^{N-1}, g^N \in R^G = k[s_1, \ldots, s_n]$. Therefore $\frac{f}{g} = \frac{fg^{N-1}}{g^N} \in k(s_1, \ldots, s_n)$.

Proof 2. Let

$$
f(T) = \prod_{i=1}^{n} (T - X_i)
$$

= $T^{n} - s_1 T^{n-1} + s_2 T^{n-2} - \dots + (-1)^n s_n$

Then $f \in k(s_1, \ldots, s_n)[T]$ $f \in k(s_1, \ldots, s_n)[T]$ $f \in k(s_1, \ldots, s_n)[T]$ is a polynomial of degree n and L is a [splitting field](#page-17-0) for f over $k(s_1, \ldots, s_n)$ $k(s_1, \ldots, s_n)$ $k(s_1, \ldots, s_n)$. So we have $L/L^G/k(s_1, \ldots, s_n)$ $L/L^G/k(s_1, \ldots, s_n)$ $L/L^G/k(s_1, \ldots, s_n)$ $L/L^G/k(s_1, \ldots, s_n)$ $L/L^G/k(s_1, \ldots, s_n)$. [Example Sheet 1, Question 12](https://www.maths.cam.ac.uk/undergrad/examplesheets) tells u[s](#page-23-1) that $[L : k(s_1, \ldots, s_n)] \leq n!$ $[L : k(s_1, \ldots, s_n)] \leq n!$ $[L : k(s_1, \ldots, s_n)] \leq n!$. But also $[L : L^G] = #G = n!$ by [Artin's Theorem on](#page-75-0) [Invariants.](#page-75-0) So by [Tower Law,](#page-5-0) $L^G = k(s_1, \ldots, s_n)$ $L^G = k(s_1, \ldots, s_n)$ $L^G = k(s_1, \ldots, s_n)$ $L^G = k(s_1, \ldots, s_n)$. \Box

Remark. We have shown that the [Galois group](#page-37-0) of a "generic" monic polynomial of degree *n* is S_n .

Exercise:Show that for any [finite](#page-4-0) group G there exists a finite [Galois](#page-34-2) [extension](#page-3-1) L/K with [Galois group](#page-37-0) G . This may not be possible if we specify K in advance.

This may not be possible if we specify K in advance, for example $K = \mathbb{C}$ or $K = \mathbb{F}_p$, and is a famous open problem when $K = \mathbb{Q}$ (inverse [Galois group\)](#page-37-0).

Corollary 12.3. Let S_n act on $L = k(X_1, \ldots, X_n)$ by permuting the X_i . If [char\(](#page-3-4)k) $\neq 2$, then $L^{A_n} = k(s_1, \ldots, s_n, \delta)$ where $\delta = \prod_{i < j} (X_i - X_j)$.

Proof. $(S_n : A_n) = 2$, hence $[L^{A_n} : k(s_1, ..., s_n)] = 2$ $[L^{A_n} : k(s_1, ..., s_n)] = 2$ $[L^{A_n} : k(s_1, ..., s_n)] = 2$. We have $\sigma(\delta) = \text{sign}(\sigma)\delta$ for all $\sigma \in S_n$ $\sigma \in S_n$ $\sigma \in S_n$. In particular $\delta \in L^{A_n}$ $\delta \in L^{A_n}$ $\delta \in L^{A_n}$ and $\delta \notin L^{S_n}$. Therefore $L^{A_n} = k(s_1, \ldots, s_n, \delta)$. \Box **[R](#page-34-1)emark.** It can be [s](#page-23-1)hown that if $R = k[X_1, \ldots, X_n]$ then $R^{A_n} = k[s_1, \ldots, s_n, \delta]$. **Idea of proof:** Let $f \in R^{A_n}$ $f \in R^{A_n}$ $f \in R^{A_n}$. Pick $\sigma \in S_n \setminus A_n$. Write $f = \frac{1}{2}$ $\frac{1}{2}((f+\sigma f) + (f-\sigma f)).$ Then show $f - \sigma f$ is divisible by δ .

Theorem (Fundamental Theorem of Algebra)**.** C is algebraically closed.

Proof. We'll use the following facts:

- (i) Every polynomial over $\mathbb R$ of odd degree has a root in $\mathbb R$.
- (ii) Every quadratic over $\mathbb C$ has a root in $\mathbb C$ (use quadratic formula, $\sqrt{r e^{i\theta}} = \sqrt{r} e^{i\theta/2}$).
- (iii) Every group of order 2^n has an index 2 subgroup (since every group of order p^k has a subgroup of order p^j for all $j \leq k$, by considering the composition series, and using the fact that the centre of a p-group is always non-trivial).

Suppose L/\mathbb{C} L/\mathbb{C} is a [finite](#page-4-0) with $L \neq \mathbb{C}$. Replacing L by its [Galois closure](#page-42-0) over R, we may assume L/\mathbb{R} L/\mathbb{R} is [Galois.](#page-34-2) Let $G = \text{Gal}(L/\mathbb{R})$. Let $H \subset G$ be a Sylow 2-subgroup. Then $[L^H : \mathbb{R}] = (G : H)$ is odd. So if $\alpha \in L^H$ then $[\mathbb{R}(\alpha) : \mathbb{R}]$ $[\mathbb{R}(\alpha) : \mathbb{R}]$ $[\mathbb{R}(\alpha) : \mathbb{R}]$ is odd, hence $\alpha \in \mathbb{R}$ by (i). Therefore $L^H = \mathbb{R}$ $L^H = \mathbb{R}$ and $G = H$ is a 2-group. Let $G_1 = \text{Gal}(L/\mathbb{C}) \subset \text{Gal}(L/\mathbb{R}) = G$ $G_1 = \text{Gal}(L/\mathbb{C}) \subset \text{Gal}(L/\mathbb{R}) = G$ $G_1 = \text{Gal}(L/\mathbb{C}) \subset \text{Gal}(L/\mathbb{R}) = G$. Since $L \neq \mathbb{C}$ we have G_1 non-trivial, so by (iii) it has an index 2 subgroup, say G_2 . Then $[L^{G_2}: \mathbb{C}] = (G_1: G_2) = 2 \times \text{by (ii)}.$ $[L^{G_2}: \mathbb{C}] = (G_1: G_2) = 2 \times \text{by (ii)}.$ $[L^{G_2}: \mathbb{C}] = (G_1: G_2) = 2 \times \text{by (ii)}.$ $[L^{G_2}: \mathbb{C}] = (G_1: G_2) = 2 \times \text{by (ii)}.$ $[L^{G_2}: \mathbb{C}] = (G_1: G_2) = 2 \times \text{by (ii)}.$ \Box

Index

- K[-embedding](#page-15-1) [16,](#page-15-2) [18](#page-17-2)
- K[-homomorphism](#page-15-0) [16,](#page-15-2) [17,](#page-16-0) [19,](#page-18-0) [20,](#page-19-0) [28,](#page-27-0) [31,](#page-30-1) [35,](#page-34-3) [49,](#page-48-0) [54,](#page-53-0) [74,](#page-73-1) [75](#page-74-0)
- K[-automorphism](#page-34-4) [35](#page-34-3)
- $Aut(L/K)$ $Aut(L/K)$ $Aut(L/K)$ [35,](#page-34-3) [36,](#page-35-0) [37](#page-36-1)
- [algebraic](#page-9-0) [9,](#page-8-1) [12,](#page-11-0) [23](#page-22-0)
- [algebraically closed](#page-21-2) [21,](#page-20-0) [22,](#page-21-3) [23,](#page-22-0) [74,](#page-73-1) [75](#page-74-0)
- [algebraic closure](#page-21-0) [22,](#page-21-3) [23,](#page-22-0) [49,](#page-48-0) [73,](#page-72-2) [74,](#page-73-1) [75](#page-74-0)
- [algebraic](#page-7-0) [8,](#page-7-1) [9,](#page-8-1) [12,](#page-11-0) [13,](#page-12-0) [15,](#page-14-0) [16,](#page-15-2) [18,](#page-17-2) [22,](#page-21-3) [23,](#page-22-0) [75,](#page-74-0) [76](#page-75-1)
- [algebraic](#page-8-0) [9,](#page-8-1) [12,](#page-11-0) [22,](#page-21-3) [23,](#page-22-0) [28,](#page-27-0) [30,](#page-29-2) [35,](#page-34-3) [73,](#page-72-2) [74,](#page-73-1) [75,](#page-74-0) [76](#page-75-1)
- [automorphism](#page-34-6) [35,](#page-34-3) [39](#page-38-0)
- [Aut](#page-34-0) [35,](#page-34-3) [52,](#page-51-0) [76,](#page-75-1) [77](#page-76-0)
- [Cardano's formula](#page-23-2) [24](#page-23-3)
- [chain](#page-71-0) [72,](#page-71-7) [74](#page-73-1)
- [characteristic](#page-3-4) [4,](#page-3-5) [5,](#page-4-1) [30,](#page-29-2) [40,](#page-39-0) [41,](#page-40-0) [51,](#page-50-0) [54,](#page-53-0) [55,](#page-54-0) [62,](#page-61-0) [66,](#page-65-0) [68,](#page-67-0) [69,](#page-68-0) [78](#page-77-0)
- [composite](#page-40-1) [41,](#page-40-0) [70](#page-69-0)
- L_1L_2 L_1L_2 [41,](#page-40-0) [42,](#page-41-0) [43](#page-42-1)
- [constructed](#page-13-0) [14,](#page-13-1) [65](#page-64-0)
- [constructible](#page-13-2) [14,](#page-13-1) [15](#page-14-0)
- [constructible](#page-13-3) [14,](#page-13-1) [15,](#page-14-0) [64,](#page-63-0) [65](#page-64-0)
- [constructible](#page-13-4) [14,](#page-13-1) [15,](#page-14-0) [65](#page-64-0)
- [cyclotomic polynomial](#page-63-1) [63](#page-62-0)

 Φ_n [63,](#page-62-0) [64](#page-63-0)

[cyclotomic](#page-61-1) [62,](#page-61-0) [70](#page-69-0)

 χ [62,](#page-61-0) [63,](#page-62-0) [64](#page-63-0)

[discriminant](#page-26-0) [27](#page-26-1)

[Disc](#page-26-2) [27,](#page-26-1) [54,](#page-53-0) [55,](#page-54-0) [57,](#page-56-0) [58](#page-57-0)

[elementary symmetric function](#page-23-0) [24,](#page-23-3) [25,](#page-24-1) [26,](#page-25-0) [77](#page-76-0)

[embedding](#page-4-2) [5,](#page-4-1) [17,](#page-16-0) [18,](#page-17-2) [19,](#page-18-0) [49,](#page-48-0) [66](#page-65-0)

[extension](#page-3-1) [4,](#page-3-5) [5,](#page-4-1) [7,](#page-6-1) [9,](#page-8-1) [10,](#page-9-1) [16,](#page-15-2) [22,](#page-21-3) [28,](#page-27-0) [34,](#page-33-0) [35,](#page-34-3) [37,](#page-36-1) [38,](#page-37-3) [43,](#page-42-1) [45,](#page-44-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [51,](#page-50-0) [52,](#page-51-0) [68,](#page-67-0) [70,](#page-69-0) [73,](#page-72-2) [74,](#page-73-1) [76,](#page-75-1) [78](#page-77-0)

[degree](#page-4-0) [5,](#page-4-1) [10,](#page-9-1) [34,](#page-33-0) [49,](#page-48-0) [68](#page-67-0)

 $[L: K]$ $[L: K]$ $[L: K]$ [5,](#page-4-1) [6,](#page-5-2) [8,](#page-7-1) [9,](#page-8-1) [10,](#page-9-1) [12,](#page-11-0) [13,](#page-12-0) [14,](#page-13-1) [15,](#page-14-0) [18,](#page-17-2) [19,](#page-18-0) [20,](#page-19-0) [22,](#page-21-3) [28,](#page-27-0) [31,](#page-30-1) [32,](#page-31-0) [33,](#page-32-0) [34,](#page-33-0) [35,](#page-34-3) [36,](#page-35-0) [37,](#page-36-1) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [43,](#page-42-1) [45,](#page-44-0) [46,](#page-45-0) [47,](#page-46-0) [49,](#page-48-0) [52,](#page-51-0) [62,](#page-61-0) [63,](#page-62-0) [64,](#page-63-0) [65,](#page-64-0) [66,](#page-65-0) [67,](#page-66-0) [68,](#page-67-0) [69,](#page-68-0) [70,](#page-69-0) [76,](#page-75-1) [78,](#page-77-0) [79](#page-78-0)

[field](#page-3-0) [4,](#page-3-5) [5,](#page-4-1) [6,](#page-5-2) [8,](#page-7-1) [9,](#page-8-1) [12,](#page-11-0) [14,](#page-13-1) [17,](#page-16-0) [18,](#page-17-2) [20,](#page-19-0) [21,](#page-20-0) [22,](#page-21-3) [23,](#page-22-0) [28,](#page-27-0) [34,](#page-33-0) [35,](#page-34-3) [38,](#page-37-3) [41,](#page-40-0) [51,](#page-50-0) [52,](#page-51-0) [62,](#page-61-0) [66,](#page-65-0) [69,](#page-68-0) [70,](#page-69-0) [73,](#page-72-2) [75,](#page-74-0) [76](#page-75-1)

 $K(\alpha)$ $K(\alpha)$ [7,](#page-6-1) [8,](#page-7-1) [9,](#page-8-1) [10,](#page-9-1) [12,](#page-11-0) [13,](#page-12-0) [14,](#page-13-1) [15,](#page-14-0) [16,](#page-15-2) [17,](#page-16-0) [18,](#page-17-2) [19,](#page-18-0) [20,](#page-19-0) [21,](#page-20-0) [22,](#page-21-3) [23,](#page-22-0) [24,](#page-23-3) [25,](#page-24-1) [26,](#page-25-0) [28,](#page-27-0) [29,](#page-28-0) [30,](#page-29-2) [31,](#page-30-1) [32,](#page-31-0) [33,](#page-32-0) [34,](#page-33-0) [35,](#page-34-3) [37,](#page-36-1) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [42,](#page-41-0) [43,](#page-42-1) [44,](#page-43-0) [45,](#page-44-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [57,](#page-56-0) [58,](#page-57-0) [59,](#page-58-0) [60,](#page-59-0) [61,](#page-60-0) [62,](#page-61-0) [63,](#page-62-0) [64,](#page-63-0) [65,](#page-64-0) [66,](#page-65-0) [67,](#page-66-0) [68,](#page-67-0) [69,](#page-68-0) [70,](#page-69-0) [73,](#page-72-2) [74,](#page-73-1) [75,](#page-74-0) [76,](#page-75-1) [77,](#page-76-0) [78,](#page-77-0) [79](#page-78-0)

[field embedding](#page-4-3) [5,](#page-4-1) [19,](#page-18-0) [20](#page-19-0)

[field extension](#page-3-3) [4,](#page-3-5) [5,](#page-4-1) [6,](#page-5-2) [7,](#page-6-1) [8,](#page-7-1) [9,](#page-8-1) [12,](#page-11-0) [14,](#page-13-1) [16,](#page-15-2) [17,](#page-16-0) [18,](#page-17-2) [22,](#page-21-3) [29,](#page-28-0) [30,](#page-29-2) [31,](#page-30-1) [32,](#page-31-0) [33,](#page-32-0) [34,](#page-33-0) [35,](#page-34-3) [46,](#page-45-0) [62,](#page-61-0) [74,](#page-73-1) [75](#page-74-0)

[/](#page-3-2) [4,](#page-3-5) [5,](#page-4-1) [6,](#page-5-2) [7,](#page-6-1) [8,](#page-7-1) [9,](#page-8-1) [10,](#page-9-1) [12,](#page-11-0) [16,](#page-15-2) [17,](#page-16-0) [18,](#page-17-2) [20,](#page-19-0) [22,](#page-21-3) [23,](#page-22-0) [28,](#page-27-0) [29,](#page-28-0) [30,](#page-29-2) [31,](#page-30-1) [32,](#page-31-0) [33,](#page-32-0) [35,](#page-34-3) [36,](#page-35-0) [37,](#page-36-1) [38,](#page-37-3) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [42,](#page-41-0) [43,](#page-42-1) [44,](#page-43-0) [45,](#page-44-0) [46,](#page-45-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [51,](#page-50-0) [52,](#page-51-0) [54,](#page-53-0) [55,](#page-54-0) [57,](#page-56-0) [59,](#page-58-0) [60,](#page-59-0) [62,](#page-61-0) [63,](#page-62-0) [64,](#page-63-0) [66,](#page-65-0) [67,](#page-66-0) [68,](#page-67-0) [70,](#page-69-0) [73,](#page-72-2) [74,](#page-73-1) [75,](#page-74-0) [76,](#page-75-1) [78,](#page-77-0) [79](#page-78-0)

[finite](#page-4-0) [5,](#page-4-1) [6,](#page-5-2) [9,](#page-8-1) [22,](#page-21-3) [30,](#page-29-2) [35,](#page-34-3) [38,](#page-37-3) [39,](#page-38-0) [43,](#page-42-1) [45,](#page-44-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [51,](#page-50-0) [70,](#page-69-0) [76,](#page-75-1) [78,](#page-77-0) [79](#page-78-0)

 F_q F_q [51,](#page-50-0) [52,](#page-51-0) [63](#page-62-0)

[fixed field](#page-34-7) [35,](#page-34-3) [51,](#page-50-0) [54](#page-53-0)

 L^S L^S [35,](#page-34-3) [36,](#page-35-0) [37,](#page-36-1) [38,](#page-37-3) [39,](#page-38-0) [52,](#page-51-0) [55,](#page-54-0) [76,](#page-75-1) [77,](#page-76-0) [78,](#page-77-0) [79](#page-78-0)

[formal derivative](#page-28-1) [28](#page-27-0)

['](#page-28-2) [28,](#page-27-0) [29,](#page-28-0) [30,](#page-29-2) [51,](#page-50-0) [62,](#page-61-0) [66](#page-65-0)

[Frobenius homomorphism](#page-5-3) [6,](#page-5-2) [63](#page-62-0)

[Galois closure](#page-42-0) [43,](#page-42-1) [44,](#page-43-0) [79](#page-78-0)

[Galois](#page-34-2) [35,](#page-34-3) [36,](#page-35-0) [37,](#page-36-1) [38,](#page-37-3) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [42,](#page-41-0) [43,](#page-42-1) [48,](#page-47-0) [51,](#page-50-0) [52,](#page-51-0) [62,](#page-61-0) [66,](#page-65-0) [68,](#page-67-0) [70,](#page-69-0) [76,](#page-75-1) [78,](#page-77-0) [79](#page-78-0)

[Galois group](#page-37-0) [37,](#page-36-1) [68,](#page-67-0) [70,](#page-69-0) [76,](#page-75-1) [78](#page-77-0)

[Gal](#page-37-1) [37,](#page-36-1) [38,](#page-37-3) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [42,](#page-41-0) [43,](#page-42-1) [48,](#page-47-0) [49,](#page-48-0) [51,](#page-50-0) [52,](#page-51-0) [54,](#page-53-0) [55,](#page-54-0) [57,](#page-56-0) [59,](#page-58-0) [60,](#page-59-0) [62,](#page-61-0) [63,](#page-62-0) [64,](#page-63-0) [66,](#page-65-0) [67,](#page-66-0) [68,](#page-67-0) [70,](#page-69-0) [76,](#page-75-1) [79](#page-78-0)

Gal (f/K) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [57,](#page-56-0) [58,](#page-57-0) [59,](#page-58-0) [60,](#page-59-0) [61,](#page-60-0) [69,](#page-68-0) [70,](#page-69-0) [71](#page-70-0)

[homogeneous](#page-24-2) [25,](#page-24-1) [26](#page-25-0)

[HomK](#page-31-1) [31,](#page-30-1) [32,](#page-31-0) [33](#page-32-0)

[infinite](#page-4-4) [5](#page-4-1)

[inseparable](#page-29-3) [29](#page-28-0)

[Kummer extension](#page-66-1) [66,](#page-65-0) [70](#page-69-0)

[lexicographic ordering](#page-25-1) [25,](#page-24-1) [26,](#page-25-0) [27](#page-26-1)

[maximal](#page-71-3) [72,](#page-71-7) [75](#page-74-0)

[minimal polynomial](#page-7-2) [8,](#page-7-1) [15,](#page-14-0) [16,](#page-15-2) [18,](#page-17-2) [22,](#page-21-3) [28,](#page-27-0) [30,](#page-29-2) [31,](#page-30-1) [32,](#page-31-0) [33,](#page-32-0) [34,](#page-33-0) [37,](#page-36-1) [38,](#page-37-3) [39,](#page-38-0) [43,](#page-42-1) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [54,](#page-53-0) [64](#page-63-0)

 \overline{f} \overline{f} \overline{f} [59,](#page-58-0) [60,](#page-59-0) [61,](#page-60-0) [64,](#page-63-0) [71](#page-70-0)

 μ ⁿ [62,](#page-61-0) [63,](#page-62-0) [66,](#page-65-0) [67,](#page-66-0) [68,](#page-67-0) [70](#page-69-0)

[multiplicative group](#page-5-4) [5](#page-4-1)

 K^* K^* [5,](#page-4-1) [6,](#page-5-2) [8,](#page-7-1) [31,](#page-30-1) [51,](#page-50-0) [62,](#page-61-0) [63,](#page-62-0) [65,](#page-64-0) [66,](#page-65-0) [67,](#page-66-0) [68,](#page-67-0) [70,](#page-69-0) [78](#page-77-0)

 $(K^*)^n$ $(K^*)^n$ $(K^*)^n$ [67,](#page-66-0) [68](#page-67-0)

 $N_{L/K}(\alpha)$ $N_{L/K}(\alpha)$ $N_{L/K}(\alpha)$ [45,](#page-44-0) [46,](#page-45-0) [47,](#page-46-0) [48,](#page-47-0) [49](#page-48-0)

[normal](#page-27-1) [28,](#page-27-0) [36,](#page-35-0) [37,](#page-36-1) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [42,](#page-41-0) [43,](#page-42-1) [70](#page-69-0)

[partial order](#page-71-4) [72,](#page-71-7) [74](#page-73-1)

[partially ordered set](#page-71-5) [72,](#page-71-7) [74](#page-73-1) primitive *n*[-th root of unity](#page-61-4) $62, 63, 66, 70$ $62, 63, 66, 70$ $62, 63, 66, 70$ $62, 63, 66, 70$ [prime subfield](#page-3-6) [4,](#page-3-5) [35](#page-34-3) [resolvent cubic](#page-55-1) [56,](#page-55-0) [57,](#page-56-0) [59](#page-58-0) $K[\alpha]$ $K[\alpha]$ [7](#page-6-1) [separable](#page-29-0) [30,](#page-29-2) [31,](#page-30-1) [33,](#page-32-0) [76](#page-75-1) [separable](#page-29-1) [30,](#page-29-2) [31,](#page-30-1) [33,](#page-32-0) [34,](#page-33-0) [36,](#page-35-0) [37,](#page-36-1) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [43,](#page-42-1) [49,](#page-48-0) [76](#page-75-1) [separable](#page-29-4) [29,](#page-28-0) [30,](#page-29-2) [34,](#page-33-0) [36,](#page-35-0) [37,](#page-36-1) [39,](#page-38-0) [42,](#page-41-0) [43,](#page-42-1) [51,](#page-50-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [57,](#page-56-0) [59,](#page-58-0) [60,](#page-59-0) [62,](#page-61-0) [64,](#page-63-0) [66](#page-65-0) σ [-embedding](#page-16-1) [17,](#page-16-0) [18,](#page-17-2) [19](#page-18-0) σ [-homomorphism](#page-16-1) [17,](#page-16-0) [32,](#page-31-0) [33](#page-32-0) [simple](#page-7-3) [7,](#page-6-1) [30](#page-29-2) [simple](#page-27-2) [28,](#page-27-0) [29](#page-28-0) [soluble](#page-68-1) [69,](#page-68-0) [70,](#page-69-0) [71](#page-70-0) [soluble by radicals](#page-68-2) [69,](#page-68-0) [70,](#page-69-0) [71](#page-70-0) [splitting field](#page-17-0) [18,](#page-17-2) [19,](#page-18-0) [20,](#page-19-0) [23,](#page-22-0) [28,](#page-27-0) [29,](#page-28-0) [30,](#page-29-2) [31,](#page-30-1) [36,](#page-35-0) [37,](#page-36-1) [39,](#page-38-0) [40,](#page-39-0) [41,](#page-40-0) [42,](#page-41-0) [43,](#page-42-1) [51,](#page-50-0) [54,](#page-53-0) [57,](#page-56-0) [59,](#page-58-0) [60,](#page-59-0) [62,](#page-61-0) [66,](#page-65-0) [70,](#page-69-0) [73,](#page-72-2) [78](#page-77-0) [symmetric polynomial](#page-23-4) [24,](#page-23-3) [25,](#page-24-1) [26](#page-25-0) [s](#page-23-1)ⁱ [24,](#page-23-3) [25,](#page-24-1) [26,](#page-25-0) [27,](#page-26-1) [77,](#page-76-0) [78](#page-77-0) [symmetric](#page-23-5) [24,](#page-23-3) [25](#page-24-1) [totally ordered](#page-71-1) [72,](#page-71-7) [74](#page-73-1) $\text{Tr}_{L/K}(\alpha)$ $\text{Tr}_{L/K}(\alpha)$ $\text{Tr}_{L/K}(\alpha)$ [45,](#page-44-0) [46,](#page-45-0) [47,](#page-46-0) [48,](#page-47-0) [49](#page-48-0) [transcendental](#page-9-2) [9,](#page-8-1) [15](#page-14-0) [transcendental](#page-8-2) [9](#page-8-1) [upper bound](#page-71-6) [72,](#page-71-7) [75](#page-74-0) ζ_n [62,](#page-61-0) [63,](#page-62-0) [64,](#page-63-0) [65,](#page-64-0) [66,](#page-65-0) [67,](#page-66-0) [68,](#page-67-0) [69,](#page-68-0) [70](#page-69-0)