%! TEX root = GT.tex % vim: tw=50 % 24/10/2023 09AM Similarly: \begin{proposition} \label{min_deg_min_path} Let $G$ be a \gls{connected} \gls{graph} on $n$ \glspl{vertex} ($n \ge 3$). Then $\mindeg(G) \ge \frac{k}{2}$ (for some $n$) $\implies$ $G$ has a \gls{path} of length $k$. \end{proposition} \begin{remark*} Do need $G$ \gls{connected} -- for example: \begin{center} \includegraphics[width=0.6\linewidth]{images/69f87eaf90c94ce7.png} \end{center} \end{remark*} \begin{proof} Let $x_1, \ldots, x_l$ be a longest \gls{path} in $G$ ($l \ge 3$ since $G$ \gls{connected}, $|G| > 2$). Suppose $l \le k$. Then $G$ has no $l$-\gls{cycle} (as before), and $\Gamma(x_1), \Gamma^+(x_l) \subset \{x_2, \ldots, x_l\}$ and are disjoint (as before). But $|\Gamma(x_1)|, |\Gamma^+(x_l)| \ge \frac{k}{2}$ and $|\{x_2, \ldots, x_l\}| < k$, \contradiction. \end{proof} \begin{theorem} \label{number_of_edges_gives_path} Let $G$ a \gls{graph} on $n$ \glspl{vertex}. Then $e(G) > \frac{n(k - 1)}{2} \implies G \supset P_k$. \end{theorem} \begin{note*} \phantom{} \begin{enumerate}[(1)] \item Equivalently: if $G \not\supset P_k$ then $e(G) \le \frac{n(k - 1)}{2}$. \item Bound is best possible, e.g. if $k \mid n$: \begin{center} \includegraphics[width=0.6\linewidth]{images/9a5b4e5f4d874a97.png} \end{center} \end{enumerate} \end{note*} \begin{proof} Induction on $n$, $n \ge 2$. Given $G$ on $n \ge 3$ \glspl{vertex}, with $G \not\supset P_k$: want $e(G) \le \frac{n(k - 1)}{2}$. Without loss of generality, $G$ \gls{connected}: if $G$ \glsref[connected]{disconnected}, with \glspl{conn_comp} $G_1, \ldots, G_r$ on $n_1, \ldots, n_r$ \glspl{vertex}, then $e(G_i) \le \frac{n_i(k - 1)}{2}$ (induction), so \[ e(G) \le \sum \frac{n_i(k - 2)}{2} = \frac{n(k - 1)}{2} .\] Hence, by \cref{min_deg_min_path}, $G$ has a \gls{vertex} $x$ of degee $\le \frac{k - 1}{2}$ ($e(G) \le \frac{n(k - 1)}{2}$ trivial if $k > n$, so without loss of generality $k < n$). Let $G' = G - x$, then $|G'| = n - 1$, $G' \not\supset P_k$, so $e(G') \le \frac{(n - 1)(k - 1)}{2}$. So $e(G) = e(G') + \vdeg(x) \le \frac{(n - 1)(k - 1)}{2} + \frac{k - 1}{2} = \frac{n(k - 1)}{2}$. \end{proof} Often we ask: How ``large'' can a \gls{graph} be with a certain property? These are called \emph{extremal problems}. Often, this property is non-containment of a particular \gls{subgraph}. For example, \cref{min_deg_implies_ham} is about $\cycle_n$, and \cref{number_of_edges_gives_path}. What about \glspl{complete_graph}? \subsection{Tur\'an's theorem} How many \glspl{edge} can a \gls{graph} (on $k$ \glspl{vertex}) have without containing a $\complete_k$? \begin{example*} We'd try $G$ \gls{bipartite}, indeed \gls{complete_bipartite}, so $G = \bipartite_{a, b}$ where $a + b = n$. We'd want $a + b = \frac{n}{2}$ ($n$ even), $a = \frac{n + 1}{2}$, $b = \frac{n - 1}{2}$ if $n$ odd. \begin{center} \includegraphics[width=0.6\linewidth]{images/5caf10c7f172483a.png} \end{center} $k = 4$, might try: \begin{center} \includegraphics[width=0.6\linewidth]{images/e14bf1479d9845a9.png} \end{center} \end{example*} \begin{flashcard}[r-partite-dn] \begin{definition*}[$r$-partite] \glsnoundefn{r_partite}{$r$-partite}{$r$-partite} \cloze{Say \gls{graph} $G$ is \emph{$r$-partite} if there exists a partition $V = V_1 \cup \cdots \cup V_r$ of $V$ such that $E(V_i) = \emptyset ~\forall n$. It is \emph{complete $r$-partite} if $E = \{xy : x \in V_i, y \in V_j, i \neq j\}$. So $G$ is $k - 1$-partite $\implies$ $G$ has no $\complete_k$ (else $2$ points of $\complete_k$ in same class, \contradiction). } \end{definition*} \end{flashcard} \begin{flashcard}[turan-graph-defn] \begin{definition*}[Tur\'an graph] \glssymboldefn{turan}{Turan}{graph} \cloze{The \emph{Tur\'an graph} $T_r(n)$ is the complete \gls{r_partite} \gls{graph} on $n$ \glspl{vertex} with classes as equal as possible. ($a_1, \ldots, a_r$ are as equal as possible if $|a_i - a_j| \le 1 ~\forall i, j$).} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/4bf0941b6b794837.png} \end{center} Certainly $\turan_{k - 1}(n) \not\supset \complete_k$. Also, $\turan_{k - 1}(n)$ is \emph{maximal} $\complete_k$-free: $\turan_{k - 1}(n) + e$ always has a $\complete_k$. \end{example*} \vspace{-1em} If $r \mid n$: all points of $\turan_r(n)$ have \gls{v_deg} $n - \frac{n}{r} = \left( 1 - \frac{1}{r} \right)n$. If not, then all points have \gls{v_deg} $n - \left\lfloor \frac{n}{r} \right\rfloor$ or $n - \left\lceil \frac{n}{r} \right\rceil$. \begin{note*} \phantom{} \begin{enumerate}[(1)] \item To obtain $\turan_r(n - 1)$ from $\turan_r(n)$, remove a point from a largest class (i.e. a point of minimum \gls{v_deg}). \item To obtain $\turan_r(n + 1)$ from $\turan_r(n)$, add a point to a smallest class. \end{enumerate} \end{note*} \begin{flashcard}[turan-thm] \begin{theorem}[Tur\'an's theorem] \label{turans_thm} \cloze{Let $G$ be a \gls{graph} on $n$ \glspl{vertex} with $\edges(G) > e(\turan_{k - 1}(n))$. Then $G \supset K_k$.} \end{theorem} \begin{remark*} \cloze{\phantom{} \begin{enumerate}[(1)] \item Equivalently, if $G \not\supset \complete_k$, then $\edges(G) \le \edges(\turan_{k - 1}(n))$. \item If we know $G$ is \glsref[r_partite]{$(k - 1)$-partite}, we'd be done by some form of AM-GM. But no reason why $G$ should be \glsref[r_partite]{$(k - 1)$-partite}. For example $C_5$ does not contain $\complete_3$, but is not \gls{bipartite}. \item Looks like proof has to be fiddly and nasty, because $\edges(\turan{k - 1}(n))$ is an unpleasant formula if $n$ is not a multiple of $k - 1$. \item We'll actually prove a stronger result: $\edges(G) = \edges(\turan_{k - 1}(n))$, $G \not\supset \complete_k$ $\implies$ $G \cong \turan_{k - 1}(n)$. (``$\turan_{k - 1}(n)$ is the unique winner''). This does imply \nameref{turans_thm}, as cannot add an \gls{edge} to $\turan_{k - 1}(n)$. \end{enumerate} } \end{remark*} \begin{proof}[Proof of \nameref{turans_thm}] \cloze{Induction on $n$, $n \le k - 1$. Given $G$, $|G| = n$, $\edges(G) = \edges(\turan(n))$, $G \not\supset \complete_k$, want $G \gcong \turan(n)$. \textbf{Claim:} $\mindeg(G) \le \mindeg(\turan(n))$. This is because we have $\sum_{x \in G} \vdeg_G(x) = \sum_{y \in \turan(n)} \vdeg_{\turan(n)}(y)$. But the $\vdeg_{\turan(n)}(y)$ are as equal as possible. So $\mindeg(G) \le \mindeg(\turan(n))$. Pick $x \in G$ of minimal \gls{v_deg}, and put $G' = G - x$. $\size{G'} = n - 1$, $G' \not\supset \complete_k$, and $\edges(G') = \edges(G) - \mindeg(G) \ge \edges(\turan(n)) - \mindeg(\turan(n)) = \edges(\turan(n - 1))$. So $G' \gcong \turan(n - 1)$ (induction) with $\mindeg(G) = \mindeg(\turan(n))$: say classes $V_1, \ldots, V_{k - 1}$. Must have, in $G$, that $\nbd(x)$ misses some $V_i$ (if $\nbd(x)$ meets each $V_i$ then $G \supset \complete_k$, \contradiction). But $|\nbd(x)| = n - 1 - \min\size{V_i}$, as this is $\mindeg(\turan(n))$. Hence $\nbd(x) = \bigcup_{j \neq i} V_j$ for some $i$ such that $\size{V_i}$ is of minimum size. So $G$ is complete \rpartite{(k - 1)}, \gls{vertex} classes $V_j$ (each $j \neq i$) and $V_i \cup \{x\}$, so $G \gcong \turan(n)$.} \end{proof} \end{flashcard}