%! TEX root = GT.tex % vim: tw=50 % 21/10/2023 09AM \begin{proof}[Proof of \nameref{edge_menger}] Form $G'$ from $L(G)$ by adding two points, $a'$ and $b'$, with $a'$ joined to each $e \in E$ incident with $a$ and similarly for $b'$. Then $\exists~ \text{\abpath{a}{b} in $G$} \iff \exists~ \text{\abpath{a'}{b'} in $G'$}$, and moreover a family of $k$ \gls{indep_edge} \abpathpl{a'}{b'} in $G'$ gives a family of $k$ edge-disjoint \abpathpl{a}{b} in $G$. So done by usual \hyperref[mengers_thm]{Vertex Menger}. \end{proof} \begin{corollary} Let $G$ be a \gls{graph}, $|G| > 1$. Then \[ \text{$G$ \edgecon{k}} \iff \text{$\forall$ distinct $a, b \in G$, $\exists$ $k$ edge-disjoint \abpathpl{a}{b}} .\] \end{corollary} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Leftarrow$] Trivial. \item[$\Rightarrow$] \nameref{edge_menger} \qedhere \end{enumerate} \end{proof} \begin{note*} Can also prove \nameref{edge_menger} by \maxflowmincut\ (dual edge-capacity form). \end{note*} \newpage \mychapter{Extremal Problems} \begin{flashcard}[euler-circuit-defn] \begin{definition*}[Euler circuit] \glsnoundefn{euler_circ}{Euler circuit}{Euler circuits} \cloze{An \emph{Euler circuit} in a \gls{graph} $G$ is a \gls{circ} that contains each \gls{edge} of $G$ exactly once.} \end{definition*} \end{flashcard} \begin{flashcard}[eulerian-graph-defn] \begin{definition*}[Eulerian graph] \glsadjdefn{eulerian}{Eulerian}{graph} \cloze{ Say $G$ is \emph{Eulerian} if it has an \gls{euler_circ}. } \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth] {images/8647c4866feb11ee.png} \end{center} \end{example*} \begin{flashcard}[eulerian-characterisation-prop] \begin{proposition} Let $G$ be a \gls{connected} \gls{graph}. Then $G$ \gls{eulerian} if and only if \cloze{$\vdeg(x)$ is even for all $x \in G$ (so $G$ \gls{eulerian} if and only if all \glsref[v_deg]{degrees} even and $\le 1$ \gls{conn_comp} has an \gls{edge}).} \end{proposition} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item \cloze{If \gls{circ} goes through vertex $k$ times then $\vdeg(x) = 2k$.} \item \cloze{Induction on $e(G)$. $e(G) = 0$ trivial. Given $G$ with $e(G) > 0$, with $G$ \gls{connected}, all \glsref[v_deg]{degrees} even: choose a longest \gls{circ} $C$ in $G$ not repeating any \gls{edge} ($e(C) > 0$ because $G$ has a \gls{cycle}, since $G$ not a \gls{tree} since all \glsref[v_deg]{degrees} are $>2$). Suppose $E(C) \neq E(G)$. Let $H$ be a \gls{conn_comp} of $G - E(C)$ with $e(H) > 0$. Then for all $x \in H$, $\vdeg_H(x)$ even (as $\vdeg_G(x)$ even, $\vdeg_C(x)$ even). So $H$ has an \gls{euler_circ}, $C'$ say (induction). Since $V(H) \cap V(C) \neq \emptyset$ ($G$ connected), can combine $C$ and $C'$ to find a longer \gls{circ} than $C$ with no repeated \gls{edge}.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[hamiltonian-circuit-defn] \begin{definition*}[Hamiltonian circuit] \glsnoundefn{ham_cyc}{Hamiltonian cycle}{Hamiltonian cycle} \cloze{ In a \gls{graph} $G$, a \emph{Hamiltonian cycle} is a \gls{cycle} that goes through every \gls{edge} of $G$. } \end{definition*} \end{flashcard} \begin{flashcard}[hamiltonian-graph-defn] \begin{definition*}[Hamiltonian graph] \glsadjdefn{ham_graph}{Hamiltonian}{graph} \cloze{ Say $G$ is \emph{Hamiltonian} if it contains a \gls{ham_cyc}. } \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth] {images/2003d3286fef11ee.png} \end{center} \end{example*} \vspace{-1em} There is no ``nice'' if and only if characterisation of \glsref[ham_graph]{Hamiltonicity}. No parity kind of condition since $G$ \gls{ham_graph} implies $G + xy$ is as well. How ``large'' does a graph have to be to ensure that it is \gls{ham_graph}? Could ask, how many \glspl{edge} do we need to ensure $G$ (on $n$ \glspl{vertex}) is \gls{ham_graph}? This is a silly question, because any $x$ with $\vdeg(x) = 1$ stops $G$ from being \gls{ham_graph}, so could for example take $\complete_n$ with an extra \gls{vertex} connected to a single \gls{vertex} in $\complete_n$. This has ${n \choose 2} - (n - 2)$ edges, but it not \gls{ham_graph}. \textbf{Sensible question}: What $\mindeg(G)$ forces $G$ to be \gls{ham_graph}? If $n$ even, then $G$ being two disjoint $\complete_{n/2}$ has $\mindeg(G) = \frac{n}{2} - 1$, not \gls{ham_graph}. If $n$ odd, then $G$ being two $\complete{(n + 1)/2}$s, meeting at a point, has $\mindeg(G) = \frac{n - 1}{2}$, not \gls{ham_graph}. \begin{theorem} \label{min_deg_implies_ham} Let $G$ be a \gls{graph} on $n$ \glspl{vertex} ($n \ge 2$), with $\mindeg(G) \ge \frac{n}{2}$. Then $G$ is \gls{ham_graph}. \end{theorem} \begin{proof} $G$ \gls{connected}, since for any non-\gls{adj_v} $x, y$ must have $\nbd(x) \cap \nbd(y) \neq \emptyset$ for size reasons. Choose a longest \gls{path} $P = x_1, \ldots, x_l$ in $G$. ($l \ge 3$ since $G$ \gls{connected}, $|G| > 3$). Without loss of generality, $G$ has no $l$-\gls{cycle}, because if $l = n$ then have $n$-\gls{cycle}, and if $l < n$ then there exists $x \not\in$ \gls{cycle} \gls{adj_v} to \gls{cycle} (as $G$ \gls{connected}), giving a \gls{path} on $l + 1$ \glspl{vertex}. By maximality of $l$, we must have $\nbd(x_1) \subset \{x_1, \ldots, x_l\}$, $\nbd(x_l) \subset \{x_1, \ldots, x_l\}$, and $x_1 x_l \not\in E$. Also, cannot have $i$ such that $x_1 x_i \in E, x_{i - 1} x_i \in E$ (else have an $l$-\gls{cycle}). So the sets $\nbd(x_1)$ and $\nbd^-(x_l) = \{2 \le i \le l, x_{i - 1} \in \nbd(x_l)\}$ are disjoint. But $\nbd(x_1), \nbd^-(x_l) \subset \{x_1, \ldots, x_n\}$ and have size $\ge \frac{n}{2}$, contradiction. \end{proof} \begin{remark*} Actually, only needed $\vdeg(x) + \vdeg(y) \ge n ~\forall x, y$ non-\gls{adj_v}. \end{remark*}