%! TEX root = GT.tex % vim: tw=50 % 14/10/2023 09AM \begin{flashcard}[halls-marriage-thm] \begin{theorem}[Hall's Marriage Theorem] \label{halls_thm} \cloze{Let $G$ be a bipartite graph, vertex classes $X$, $Y$. Then $G$ has a matching from $X$ to $Y$ if and only if $|\Gamma(A)| \ge |A| ~\forall A \subset X$ (this condition is sometimes called ``Hall's condition'').} \end{theorem} \begin{proof}[Proof 1] \cloze{ Induction on $|X|$, noting $|X| = 1$ is trivial. Given $G$ with $|X| > 1$: \textbf{Question:} Do we have $|\Gamma(A)| > |A|$ for all $A \subset X$ ($A \neq \emptyset, X$)? If yes, pick $x \in X$ and $y \in \Gamma(x)$ and set $G' = G - x - y$. Then $\forall A \subset X - \{x\}$, $|\Gamma_{G'}(A)| \ge |A|$, because $|\Gamma_G(A)| \ge |A| + 1$ ($A \neq \emptyset$). So $G'$ has a matching from $X - \{x\}$ to $Y - \{y\}$ by induction hypothesis. Together with $xy$, this gives a matching from $X$ to $Y$. If no, then we have some $A \subset X$ ($A \neq \emptyset, X$) with $|\Gamma(A)| = |A|$. Let $B = \Gamma(A)$. Let $G' = G[A \cup B]$, $G'' = G[X \setminus A \cup Y \setminus B]$. For $C \subset A$, we have $|\Gamma_G(C)| \ge |C|$, so $|\Gamma_{G'}(C)| \ge |C|$ (as $\Gamma(A) = B$), so by induction, $G'$ has a matching from $A$ to $B$. For $C \subset X \setminus A$, we have $|\Gamma_G(C \cup A)| \ge |C| + |A|$, so $|\Gamma_G(C \cup A)$ contains at least $|C|$ points of $Y \setminus B$ (as $\Gamma(A) = B$ and $|B| = |A|$). But $\Gamma(A)$ is disjoint from $Y \setminus B$, so $|\Gamma_{G''}(C)| \ge C$, so by induction, $G''$ has a matching. } \end{proof} \end{flashcard} \begin{proof}[Proof 2] Form a directed network by adding source $s$, joined to each $x \in X$ by an edge of capacity $1$. Add a sink $t$ joined to each $y \in Y$ by an edge of capacity $1$, and direct each $xy \in G$ from $X$ to $Y$ with capacity $\infty$ (some large integer). Then a matching is precisely an integer-valued flow of value $|X|$, so done by integrality form of max flow min cut if every cut has capacity $\ge |X|$. \begin{center} \includegraphics[width=0.6\linewidth] {images/4604edb06a6c11ee.png} \end{center} Suppose there is a cut $(S, S^c)$, where $S = \{s\} \cup A \cup B$ with capacity $< |X|$ ($A \subset X$, $B \subset Y$). We must have $\Gamma(A) \subset B$ (else $S$ has infinite capacity). Hence $S$ has capacity $|X| - |A| + |B| \ge |X|$ since $|B| \ge |A|$ (as $B \supset \Gamma(A)$). So a cut of capacity less than $|X|$ is impossible. \end{proof} \begin{flashcard}[deficient-matching-defn] \begin{definition*}[deficient matching] \cloze{A \emph{matching of deficiency $d$} in bipartite $G$ on $X$, $Y$ consists of $|X| - d$ independent edges.} \end{definition*} \end{flashcard} \begin{flashcard}[defect-hall-coro] \begin{corollary}[Defect Hall] \label{defect_hall} \cloze{Let $G$ be a bipartite graph with classes $X$, $Y$. Then $G$ has a matching from $X$ to $Y$ of deficiency $d$ if and only if $|\Gamma(A)| \ge |A| - d ~\forall A \subset X$.} \end{corollary} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{Trivial.} \item[$\Leftarrow$] \cloze{Form $G'$ from $G$ by adding $d$ new points to $Y$, joined to all points of $X$. Then $\forall A \subset X$, $\Gamma_{G'}(A)| \ge |A|$, so $G'$ has a matching (\nameref{halls_thm}). In this matching, at least $|X| - d$ are paired into $Y$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[transversal-defn] \begin{definition*}[transversal] \cloze{ A \emph{transversal} for sets $S_1, \ldots, S_n$ consists of some distinct $x_1, \ldots, x_n$ with $x_i \in S_i ~\forall i$. } \end{definition*} \end{flashcard} \begin{example*} $S_1 = \{a, b, c\}$, $S_2 = \{a, b\}$, $S_3 = \{c, d\}$, $S_4 = \{b, d\}$. Then $x_1 = b$, $x_2 = a$, $x_3 = c$, $x_4 = d$ is a transversal. \end{example*} \vspace{-1em} When is there a transversal? Clearly need \[ \left| \bigcup_{i \in A} S_i \right| \ge |A| \qquad \forall A \subset \{1, \ldots, n\} \] This should remind you of \nameref{halls_thm}. \begin{flashcard}[transversal-coro] \begin{corollary} \label{transversal_coro} Sets $S_1, \ldots, S_n$ have a transversal if and only if \[ \cloze{\left| \bigcup_{i \in A} S_i \right| \ge |A| \qquad \forall A \subset \{1, \ldots, n\}} \] \end{corollary} \begin{proof} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{Trivial.} \item[$\Leftarrow$] \cloze{WLOG each $S_i$ finite. Form a bipartite graph $G$ with vertex classes $X = \{1, \ldots, n\}$ and $Y = \bigcup_i S_i$ by joining $i \in X$ to $j \in Y$ if $j \in S_i$. Then a transversal of $S_1, \ldots, S_n$ is precisely a matching from $X$ to $Y$. But \[ |\Gamma_G(A)| = \left| \bigcup_{i \in A} S_i \right| \ge |A| \qquad \forall A \subset X ,\] so done by \nameref{halls_thm}.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{remark*} \cref{transversal_coro} is actually \emph{equivalent} to Hall, since if $G$ is bipartite, classes $X$ and $Y$ with $X = \{x_1, \ldots, x_n\}$, then a matching from $X$ to $Y$ is exactly a transversal of the sets $\Gamma(x_1), \ldots, \Gamma(x_n)$. \end{remark*}