%! TEX root = GT.tex % vim: tw=50 % 10/10/2023 09AM \begin{flashcard}[forest-defn] \begin{definition*}[Forest] \cloze{ A \emph{forest} is an acyclic graph. } \end{definition*} \end{flashcard} \begin{flashcard}[Cutvertex] \glsnoundefn{cutvertex}{cutvertex}{cutvertices} A \emph{cutvertex} is \cloze{a \gls{vertex} $x$ such that $G - x$ is \glsref[connected]{connected}.} \end{flashcard} \begin{flashcard}[bridge-defn] \begin{definition*}[Bridge] \cloze{For a connected graph $G$, an edge $xy \in G$ is a \emph{bridge} if $G - xy$ is disconnected.} \end{definition*} \end{flashcard} \begin{remark*} Every edge in a tree is a bridge. \end{remark*} \begin{flashcard}[bridge-implies-cutvertex-lemma] \begin{lemma*} If $G$ has a bridge, \cloze{then it has a curvertex (as long as $|G| > 2$).} \end{lemma*} \end{flashcard} \begin{remark*} If $G$ has a cutvertex, it doesn't necessarily have a bridge. For example: \begin{center} \includegraphics[width=0.6\linewidth] {images/68863b2a674511ee.png} \end{center} \end{remark*} \begin{hiddenflashcard}[cutvertex-doesnt-imply-bridge] \begin{lemma*} If $G$ has a cutvertex, \cloze{then it \fcemph{does not} necessarily have a bridge.} \end{lemma*} \end{hiddenflashcard} \subsection{Bipartite Graphs} \begin{flashcard}[bipartite-defn] \begin{definition*}[Bipartite Graph] \glsadjdefn{bipartite}{bipartite}{graph} \glssymboldefn{bipartite_complete}{complete bipartite}{graph} \cloze{A graph $G = (V, E)$ is \emph{bipartite} if there exists a partitition $V = V_1, V_2$ of $V$ such that $E \subset \{xy : x \in V_1, y \in V_2\}$.} \end{definition*} \end{flashcard} \vspace{-1em} ``No edges inside the two parts.'' \begin{example*} A path is a bipartite graph: \begin{center} \includegraphics[width=0.6\linewidth] {images/ef31e30e674511ee.png} \end{center} \end{example*} \begin{flashcard}[complete-bipartite-defn] \begin{definition*} \glsadjdefn{complete_bipartite}{complete bipartite}{graph} \glssymboldefn{complete_bipartite}{$K_{m, n}$}{$K_{m, n}$} $K_{m, n}$ denotes \cloze{the \emph{complete bipartite graph}, which has vertex set $V_1 \cup V_2$ ($V_1$, $V_2$ disjoint), with $|V_1| = m$, $|V_2| = n$ and edge set $E = \{xy : x \in V_1, y \in V_2\}$. So $e(K_{m, n}) = mn$.} \end{definition*} \end{flashcard} \begin{example*} $K_{2, 3}$ looks like: \begin{center} \includegraphics[width=0.6\linewidth] {images/5e3ab212674611ee.png} \end{center} \end{example*} \vspace{-1em} We will show that a graph is bipartite if and only if it has no odd length cycles, but first we need to introduce the concept of a circuit. \begin{flashcard}[circuit-defn] \begin{definition*}[Circuit] \glsnoundefn{circ}{circuit}{circuits} \cloze{A \emph{circuit} in a graph is a closed walk, i.e. a walk $x_1, \ldots, x_k$ with $x_k = x_1$.} \end{definition*} \end{flashcard} \begin{flashcard}[odd-circuit-implies-odd-cycle] \begin{lemma*} If $G$ has an odd circuit, then it has an odd cycle. \end{lemma*} \begin{proof} \cloze{ Suppose $x_1, \ldots, x_k = x_1$ is an odd circuit that is not a cycle. Say $x_i = x_j$ for $i < j$. Then one of $x_i x_{i + 1} \ldots x_j$ or $x_j x_{j + 1} \ldots x_{k - 1} x_1 x_2 \ldots x_i$ is a shorter circuit. Done by induction on length.} \end{proof} \end{flashcard} \begin{remark*} We have crucially used oddness in this proof. The lemma is false if ``odd'' is replaced by ``even''. \end{remark*} \begin{flashcard}[bipartite-iff-prop] \begin{proposition} A graph $G$ is bipartite if and only if \cloze{$G$ has no odd cycle.} \end{proposition} \begin{proof} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{A cycle's vertices must alternate between $V_1$ and $V_2$.} \item[$\Leftarrow$] \cloze{Without loss of generality, assume $G$ is connected (since if each component of $G$ is bipartite then so is $G$). Fix $x_0 \in V$. Let $V_1 = \{x : d(x, x_0) \text{even}\}$ and $V_2 = \{x : d(x, x_0) \text{odd}\}$. If we had an edge $xy$ with $x, y \in V_1$ or $x, y \in V_2$, then $xy$ together with shortest paths from $x$ and $y$ to $x_0$ would form an odd circuit. Hence $G$ would contain an odd cycle, contradiction.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \subsection{Planar graphs} \begin{flashcard}[planar-graph-defn] \begin{definition*}[Planar Graph] \glsadjdefn{planar}{planar}{graph} \cloze{A \emph{planar graph} is a graph that can be drawn in the plane without crossing edges.} \end{definition*} \end{flashcard} \begin{flashcard}[plane-graph-defn] \begin{definition*}[Plane Graph] \glsadjdefn{plane}{plane}{\gls{graph}} \cloze{A \emph{plane graph} is a drawing of a planar graph in which none of the edges cross.} \end{definition*} \end{flashcard} \begin{example*} $K_4$ is a planar graph, but the following is not a plane graph: \begin{center} \includegraphics[width=0.3\linewidth] {images/321aca30674811ee.png} \end{center} On the other hand, this drawing of $K_4$ \emph{is} a plane graph: \begin{center} \includegraphics[width=0.3\linewidth] {images/3fccadf6674811ee.png} \end{center} \end{example*} \begin{flashcard}[face-defn] \begin{definition*}[Face] \glsnoundefn{face}{face}{faces} \cloze{For a plane graph $G$, $\RR^2 - G$ splits up into connected regions called \emph{faces}. The \emph{boundary} of a face consists of the vertices and edges of $G$ that touch it.} \end{definition*} \end{flashcard} \begin{example*} The following has 6 faces: \begin{center} \includegraphics[width=0.3\linewidth] {images/a10551cc674811ee.png} \end{center} $F_1$ has boundary a $3$-cycle, and $F_6$ has boundary a $5$-cycle. \end{example*} \begin{warning*} \phantom{} \begin{enumerate}[(1)] \item Boundary of a face need not be a cycle, for example \begin{center} \includegraphics[width=0.3\linewidth] {images/f8e046b8674811ee.png} \end{center} \item Boundary of a face need not even be connected, for example: \begin{center} \includegraphics[width=0.3\linewidth] {images/2457a0a2674911ee.png} \end{center} \item The two faces on either side of an edge may be the same, for example: \begin{center} \includegraphics[width=0.3\linewidth] {images/39483b66674911ee.png} \end{center} \end{enumerate} \end{warning*} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item Every tree is planar, with exactly 1 face. Proof is by induction via remove a leaf (remember that this is the usual way to attack a question about trees). \item The empty graph $E_n$ is planar. \item Every cycle is planar (via the obvious drawing). \end{enumerate} \end{example*} \vspace{-1em} \textbf{Question:} Which graphs are planar? How do we tell if a graph is / isn't planar? \subsubsection*{Formal Bit} \begin{definition*} For $x, y \in RR^2$, a \emph{polygonal arc} from $x$ to $y$ is a finite union of (closed) straight-line segments $\ol{x_1 x_2} \cup \ol{x_2 x_3} \cup \cdots \cup \ol{x_{k - 1} x_k}$ such that $x_1 = x$, $x_k = y$ and the $\ol{x_i x_{i + 1}}$ are disjoint except for $\ol{x_i x_{i + 1}} \cap \ol{x_{i + 1} x_{i + 2}} = \{x_{i + 1}\}$. \end{definition*} \vspace{-1em} For a graph $G$, with $V = \{v_1, \ldots, v_n\}$, a \emph{drawing} of $G$ consists of distinct points $x_1, \ldots, x_n \in \RR^2$, together with, for each $v_i v_j \in E$, a polygonal arc $p_{ij}$ from $x_i$ to $x_j$ such that $p_{ij} \cap p_{kl} = \emptyset$ if $i, j, k, l$ distinct and $p_{ij} \cap p_{jk} = \{x_j\}$ for $i, k$ distinct. On $\RR^2 - G$, define $x \sim y$ if there exists a polygonal arc in $\RR^2 - G$ from $x$ to $y$. Clearly (ish), this is an equivalence relation. The components are the \emph{faces} of $G$. The \emph{boundary} of a face is the intersection of $G$ with the closure of the face. \begin{hiddenflashcard}[plane-graph-formalities] \prompt{Formal setup for a plane graph drawing?} \cloze{ Edges are drawn as polygonal arcs (sequence of line segments). Vertices are distinct points. Faces are connected components of $\RR^2 - G$ (where connected means there exists a polygonal arc between two points). } \end{hiddenflashcard} We'll use simple faces about $\RR^2$, like ``boundary of a face consists of vertices and (whole) edges'' or ``a cycle has 2 faces'' - all can be proved by induction on the number of straight-line segments.