%! TEX root = GT.tex % vim: tw=50 % 28/11/2023 09AM \begin{remark*}[Silly remark] If $G$ is a \gls{complete_graph}, then $b$ is not well-defined -- $\complete_t$ is $\strp(t - 1, t - 2, b)$ is \gls{streg} for any $b$. Also, if $b = 0$, then $G$ need not be \gls{connected} -- for example two copies of $\complete_t$ is $\strp(t - 1, t - 2, 0)$. \end{remark*} \vspace{-1em} Being \gls{streg} is actually \emph{extremely} restrictive: \begin{flashcard}[rationality-criterion-for-streg-graphs] \begin{theorem}[Rationality criterion for \gls{streg} \glspl{graph}] % Theorem 3 \label{streg_rationality_crit} Let $G$ be a \gls{streg} \gls{graph} on $n$ \glspl{vertex}, with parameters $\strp(k, a, b)$. ($G$ not \glsref[complete_graph]{complete}, $b \ge 1$). Then the numbers $\half \left( k - 1 \pm \frac{(n - 1)(b - a) - 2k}{\sqrt{(a - b)^2 + 4(k - b)}} \right)$ are integers. \end{theorem} \fcscrap{ \begin{note*} Denominator $\sqrt{(a - b)^2 + 4(k - b)} \neq 0$ -- else $a = b$, $b = k$, contradicting $a \le k - 1$. \end{note*} } \begin{proof} \cloze{ Have $G$ \gls{connected} (since $b \ge 1$). We also have that $G$ is \kreg{k}, so $k$ is an \gls{eval} with multiplicity $1$ and \gls{evec} $(1, 1, \ldots, 1)$. Consider matrix $A^2$. We know \[ (A^2)_{ij} = \#\text{\glspl{walk} of length $2$ from $i$ to $j$} \] so \[ (A^2)_{ij} = \begin{cases} k & \text{if $i = j$} \\ a & \text{if $i, j$ adjacent} \\ b & \text{if $i, j$ non-adjacent} \end{cases} \] and thus $A^2 = kI + aA + b(J - I - A)$, where $J$ is the matrix with all entries being $1$. So \[ A^2 + (b - a)A + (bI - bJ - kI) = 0 ,\] which is not quite quadratic, as there exists a $J$-term. So for \gls{evec} $x$, \gls{eval} $\lambda \neq k$: have $\langle x, (1, \ldots, 1)\rangle = 0$, so $Jx = 0$. Hence \begin{align*} 0x &= A^2 x + (b - a) Ax + (b - k) Ix \\ &= \lambda^2 x + (b - a)\lambda x + (b - k)x \\ &= (\lambda^2 + (b - a)\lambda + (b - k)) x \end{align*} Thus $\lambda^2 + (b - a)\lambda + (b - k) = 0$. Hence the \glspl{eval} $\neq k$ are $\lambda, \mu$ given by $\half (a - b \pm \sqrt{(b - a)^2 + 4(k - b)})$. Let their multiplicities be $r, s$ respectively. Then $r + s = - 1$ (as $A$ is diagonalisable), and $r \lambda + s\mu + k = 0$ (as $\Trace A = 0$). Solving for $r, s$ gives the numbers in the theorem. } \end{proof} \end{flashcard} \subsubsection*{Back to Moore Graphs} \begin{flashcard}[moore-graph-values] \begin{theorem} % Theorem 4 Let $G$ be a \gls{moore_graph} of degree $k$. Then $k \in \{2, 3, 7, 57\}$. \end{theorem} \begin{proof} \cloze{ Have $G$ \gls{streg}, parameters $\strp(k, a, b)$. Hence by \cref{streg_rationality_crit}, either the number $(n - 1)(b - a) - 2k = k^2 - 2k$ is $0$ or $\sqrt{(a - b)^2 + 4(k - b)} = \sqrt{4k - 3}$ is an integer. If $k^2 - 2k = 0$: then we have $k = 2$. If not: write $t = \sqrt{4k - 3}$. $t$ divides $k^2 - 2k = \left( \frac{t^2 + 3}{4} \right)^2 - 2 \left( \frac{t^2 + 3}{4} \right)$. So $t$ divides \[ (t^2 + 3)^2 - 8(t^2 + 3) = t^4 - 2t^2 - 15 .\] Hence $t$ divides $15$, so $t = 1, 3, 5$ or $15$. These give $k = \frac{t^2 + 3}{4}$ gives $1$ (not allowed) or $3$ or $7$ or $57$. } \end{proof} \end{flashcard} Which of these can occur? We saw earlier that for $k = 2$, $C_5$ works, and for $k = 3$ the Petersen graph works. It helps to think of the drawing of the Petersen graph drawn like this: \begin{center} \begin{tsqx} ! size(3cm); A .= dir 126 B .= dir 54 C .= dir -18 D .= dir -90 E .= dir -162 A--B--C--D--E--A label 0 @ 1.1*A label 1 @ 1.1*B label 2 @ 1.1*C label 3 @ 1.1*D label 4 @ 1.1*E \end{tsqx} \begin{tsqx} ! size(3cm); A .= dir 126 B .= dir 54 C .= dir -18 D .= dir -90 E .= dir -162 A--C--E--B--D--A label 0 @ 1.1*A label 1 @ 1.1*B label 2 @ 1.1*C label 3 @ 1.1*D label 4 @ 1.1*E \end{tsqx} \end{center} where we join $t$ in the pentagon to $t$ in the pentagram. Now for $k = 7$: The \emph{Hoffman-Singleton graph}: \kreg{7}, $50$ \glspl{vertex}, \gls{diam} $2$. Take $5$ pentagons $P_0, \ldots, P_4$ and $5$ pentagrams $Q_0, \ldots, Q_4$, and join \gls{vertex} $t$ in $P_i$ to vertex $t + ij$ in $Q_j$. This works! $k = 57$: \gls{graph}, \kreg{57}, on $3250$ \glspl{vertex}, \gls{diam} $2$. It is unknown whether this graph exists. Sometimes called the ``missing \gls{moore_graph}''. If it exists, turns out that it cannot be transitive (meaning the automorphism group is transitive, or more intuitively ``all vertices look the same'').