%! TEX root = GT.tex % vim: tw=50 % 23/11/2023 09AM \newpage \mychapter{Algebraic Methods} \begin{flashcard}[diameter-defn] \begin{definition*}[Diameter] \glspropdefn{diam}{diameter}{\gls{graph}} \cloze{The \emph{diameter} of $G$ is $\max\{\dist(x, y) : x, y \in G\}$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/b1a362aac8814808.png} \end{center} has diameter $3$. \end{example*} \vspace{-1em} Thus $G$ has \gls{diam} $1$ $\iff$ $G$ is a \gls{complete_graph}. What about \gls{diam} $2$? How large can $n = |G|$ be in terms of $\maxdeg(G)$? `Expanding out' from a \gls{vertex} $x$, we see \[ \vset(G) = \{x\} \cup \nbd(x) \cup \nbd(\nbd(x)) ,\] whence \[ n \le 1 + \maxdeg + \maxdeg(\maxdeg - 1) = 1 + \maxdeg^2 .\] So if $n = \maxdeg^2 + 1$, then $G$ is $\maxdeg$-regular (as $x$ is arbitrary). \begin{flashcard}[moore-graph] \begin{definition*}[Moore graph] \glsnoundefn{moore_graph}{Moore graph}{Moore graphs} \cloze{A \kreg{k} graph is a \emph{Moore graph} or a \emph{Moore graph of diameter $2$} if $G$ has \gls{diam} $2$ and $|G| = k^2 + 1$. Equivalently, \kreg{k} $G$ is a Moore graph $\iff$ any distinct $x, y$ joined by a \emph{unique} path of length $\le 2$ ($k \neq 1$). Equivalently: \gls{diam} $2$ and no $C_3$ or $C_4$ in $G$ (in other words, \gls{girth} $\ge 5$). } \end{definition*} \end{flashcard} \begin{example*} $k = 2$: \begin{center} \includegraphics[width=0.6\linewidth]{images/688a60c0916a46d7.png} \end{center} Has $2^2 + 1 = 5$ \glspl{vertex} (this graph is $\cycle_5$). \end{example*} \begin{example*} $k = 3$: Want $3^2 + 1 = 10$ \glspl{vertex}: \begin{center} \includegraphics[width=0.6\linewidth]{images/091396343a7144fc.png} \end{center} but the Petersen graph works: \begin{center} \begin{tsqx} ! size(5cm); A .= dir 90 B .= dir 162 C .= dir 235 D .= dir 307 E .= dir 18 a .= 0.5*A b .= 0.5*B c .= 0.5*C d .= 0.5*D e .= 0.5*E A--B--C--D--E--A a--c--e--b--d--a a--A b--B c--C d--D e--E \end{tsqx} \end{center} \end{example*} \begin{example*} $k = 4$: no such example exists. \end{example*} \begin{flashcard}[adjacency-matrix-defn] \begin{definition*}[Adjacency matrix] \glsnoundefn{adj_mat}{adjacency matrix}{adjacency matrices} \glssymboldefn{adj_mat}{$A$}{$A$} \glsnoundefn{eval}{eigenvalue}{eigenvalues} \glsnoundefn{evec}{eigenvector}{eigenvectors} \cloze{For a graph $G$ on vertex-set $\sq[n] = \{1, \ldots, n\}$, the \emph{adjacency matrix} of $G$ is the $n \times n$ matrix $A$ with \[ A_{ij} = \begin{cases} 1 & ij \in E \\ 0 & ij \notin E \end{cases} .\] So $A$ is a real symmetric matrix. } \end{definition*} \end{flashcard} \begin{example*} If $G$ is \begin{center} \begin{tsqx} ! size(5cm); A .= (-1,-1) B .= (1,-1) C .= (-1,1) D .= (1,1) E .= (0,2) A--B--D--C--A C--E--D label 1 @ 1.1*A label 2 @ 1.1*B label 3 @ 1.1*C label 4 @ 1.1*D label 5 @ 1.1*E \end{tsqx} \end{center} Then \[ A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} .\] \end{example*} \vspace{-1em} So $\adjmat$ contains all the information of $G$. For example what is $\adjmat^2$? \[ (\adjmat^2)_{ij} = \sum_k \adjmat_{ik} \adjmat_{kj} = \#\text{\glspl{walk} of length $2$ from $i$ to $j$.} \] Similarly \[ (\adjmat^3)_{ij} = \#\text{\glspl{walk} of length $3$ from $i$ to $j$} \] and in general with $3$ replaced with $n$. Have a linear map from $\RR^n$ to $\RR^n$ given by $\adjmat$, namely \[ (\adjmat x)_i = \sum_j \adjmat_{ij} x_j \] ($x \mapsto \adjmat x$). \begin{example*} Using same example as before: \begin{center} \begin{tsqx} ! size(5cm); A .= (-1,-1) B .= (1,-1) C .= (-1,1) D .= (1,1) E .= (0,2) A--B--D--C--A C--E--D label 1 @ 1.1*A label 2 @ 0.8*A+col:red label 2 @ 1.1*B label -3 @ 0.8*B+col:red label 3 @ 1.1*C label -5 @ 0.8*C+col:red label 4 @ 1.1*D label 4 @ 0.8*D+col:red label 5 @ 1.1*E label 6 @ 0.8*E+col:red label $\mapsto$ @ (1.8,0) label x @ (0,-1.2)+col:red \end{tsqx} \begin{tsqx} ! size(5cm); A .= (-1,-1) B .= (1,-1) C .= (-1,1) D .= (1,1) E .= (0,2) A--B--D--C--A C--E--D label 1 @ 1.1*A label -5-3 @ 0.8*A+col:red label 2 @ 1.1*B label 2+4 @ 0.8*B+col:red label 3 @ 1.1*C label 2+6+4 @ 0.8*C+col:red label 4 @ 1.1*D label -3-5+6 @ 0.8*D+col:red label 5 @ 1.1*E label -3+4 @ 0.8*E+col:red label Ax @ (0,-1.2)+col:red \end{tsqx} \end{center} ``Add up neighbouring values.'' i.e. if $x = (2, -3, -5, 4, 6)$ then \[ \adjmat x = (-5 - 3, 2 + 4, 2 + 6 + 4, -3 - 5 + 6, -5 + 4) \] \end{example*} \vspace{-1em} Since $\adjmat$ is real symmetric, $A$ is diagonalisable, i.e. there exists basis of \glspl{eval}, say $e_1, \ldots, e_n$ -- may assume this is is an orthonormal basis (eash $e_i$ length $1$, orthogonal to each other). Write \glspl{eval} (real) as $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Have $\sum \lambda_i = 0$ (as $\Trace(A) = 0$), so $\lambda_1 > 0$ and $\lambda_n < 0$ (unless $G = E_n$). Often, it is easy to work out the \glspl{eval} of $G$. \begin{example*} \glsref[eval]{Eigenvalues} of of $\cycle_4$: \[ \adjmat = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}\] Have $\rank(\adjmat) = 2$, so only $2$ non-zero \glspl{eval}. Other two? We can spot that the following are \glspl{evec}: \begin{center} \begin{tsqx} ! size(3cm); A .= (-1,-1) B .= (1,-1) C .= (-1,1) D .= (1,1) A--B--D--C--A label 1 @ 1.1*A label 1 @ 0.8*A+col:red label 2 @ 1.1*B label 1 @ 0.8*B+col:red label 3 @ 1.1*C label 1 @ 0.8*C+col:red label 4 @ 1.1*D label 1 @ 0.8*D+col:red \end{tsqx} \qquad \begin{tsqx} ! size(3cm); A .= (-1,-1) B .= (1,-1) C .= (-1,1) D .= (1,1) A--B--D--C--A label 1 @ 1.1*A label 1 @ 0.8*A+col:red label 2 @ 1.1*B label -1 @ 0.8*B+col:red label 3 @ 1.1*C label 1 @ 0.8*C+col:red label 4 @ 1.1*D label -1 @ 0.8*D+col:red \end{tsqx} \end{center} So the \glspl{eval} are $0, 0, 2, -2$ (or find $0, 0, 2$ and use that the sum is $0$). \end{example*} \vspace{-1em} Write $\lambda_{\max} = \lambda_1$, $\lambda{\min} = \lambda_n$ -- eg $C_4$ has $\lambda_{\max} = 2$, $\lambda_{\min} = -2$. Know $\lambda_{\max} > 0$, $\lambda_{\min} < 0$ (if $G \neq E_n$). Have out of \glspl{evec} $e_1, \ldots, e_n$, \glspl{eval} $\lambda_1, \ldots, \lambda_n$, given any $x \in \RR^n$, write $x = \sum_i c_i e_i$ for some $c_1, \ldots, c_n \in \RR$. FIx $\|x\| = 1$, ie $\sum_i c_i^2 = 1$. Then $\adjmat x = \sum_i \lambda_i c_i e_i$, so $\langle \adjmat x, x \rangle = \sum_i \lambda_i c_i^2$. Hence \[ \lambda_{\min} \le \langle \adjmat x, x \rangle \le \lambda_{\max} \quad \forall x \in \RR^n, \|x\| = 1 .\] Bounds are attained -- $\langle \adjmat x, x \rangle = \lambda_{\max}$ if $c_1 = 1$, rest $= 0$. $\langle \adjmat x, x \rangle = \lambda_{\min}$ if $c_n = 1$, rest $= 0$. \textbf{Conclusion:} \[ \lambda_{\max} = \max_{\|x\|=1} \langle \adjmat x, x \rangle, \qquad \text{and} \qquad \lambda_{\min} = \min_{\|x\| = 1} \langle \adjmat x, x\rangle . \label{lambda_minmax_eq} \tag{$*$} \]