%! TEX root = GT.tex % vim: tw=50 % 16/11/2023 09AM \newpage \mychapter{Random Graphs} We know $\ramsey(s) \le 4^s$. How fast does $\ramsey(s)$ grow? Easy to see that $\ramsey(s) > (s - 1)^2$: \begin{center} \includegraphics[width=0.6\linewidth]{images/862f707a78d3497a.png} \end{center} It was generally believed (in the 19030s and 1940s), that $\ramsey(s) \sim cs^2$. But remarkably: \begin{flashcard}[erdos-ramsey-bound] \begin{theorem}[Erd\H{o}s, 1947] \label{ramsey_lower_bound} $\ramsey(s) \ge (\sqrt{2})^s$ for all $s \ge 3$. \end{theorem} \begin{proof} \cloze{Choose a colouring of $\complete_n$ at random -- each \gls{edge} coloured red or blue, with probability $\half$, independently. Then $\PP(\text{a fixed $s$-set is monochromatic}) = 2 \cdot \left( \half \right)^{{s \choose 2}}$ (the probability that it is coloured entirely red is $\left( \half \right)^{{s \choose 2}}$, and then we double since it could be coloured either all red or all blue). Also, the number of $s$-sets is ${n \choose s}$, so certainly \[ \PP(\text{exists a monochromatic $s$-set}) \le {n \choose s} 2^{1 - {s \choose 2}} .\] Hence $\ramsey(s) > n$ (i.e. there exists a \rcolring{2} of $\complete_n$ with no monochromatic $s$-set) if ${n \choose s} 2^{1 - {s \choose 2}} < 1$, i.e. if ${n \choose 2} < 2^{{s \choose 2} - 1}$. Now, ${n \choose s} \le \frac{n^s}{s!}$ and $s! \ge 2^{\frac{s}{2} + 1}$ for all $s \ge 3$ (induction on $s$). So \[ {n \choose s} \le \frac{n^s}{2^{\frac{s}{2} + 1}} .\] So $\ramsey(s) > n$ if $n^s < 2^{\frac{s^2}{2}}$, i.e. if $n < 2^{\frac{s}{2}}$.} \end{proof} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item The above is a `random graphs' argument. \item Could rephrase as: $\#\text{colourings} = 2^{{n \choose 2}}$ and \[ \#\text{colourings making a fixed $s$-set monochromatic} = 2 \cdot 2^{{n \choose 2} - {s \choose 2}} ,\] so done if ${n \choose 2} 2^{{n \choose 2} - {s \choose 2} + 1} < 2^{{n \choose 2}}$. But this is not a helpful viewpoint -- for example, later we will pick \glspl{edge} with probability $\neq \half$. \item Proof gives no hint of how to \emph{construct} a bad colouring. \item In fact, no \emph{construction} is known giving $\ramsey(s)$ exponential in $s$. \end{enumerate} \end{remark*} \vspace{-1em} We have $(\sqrt{2})^2 \le \ramsey(s) \le 4^s$. The right growth speed is unknown. No lower bound of the form $(\sqrt{2} + \eps)^s$ is known, but it was proved in 2023 that $\ramsey(s) \le (4 - \eps)^s$ (for some small $\eps$). \begin{flashcard}[prob-space-defn] \begin{definition*}[Probability space on a graph] \glssymboldefn{Gnp}{$G(n, p)$}{$G(n, p)$} \cloze{For $0 < p < 1$, the probability space $G(n, p)$ is defined as follows: we form a \gls{graph} on $n$ \glspl{vertex} by selecting each \gls{edge}, independently, with probability $p$\fcscrap{ (so in the proof of \cref{ramsey_lower_bound}, we worked in $G \left( n, \half \right)$)}.} \end{definition*} \end{flashcard} \begin{example*} In $\psp G(5, p)$, \begin{center} \includegraphics[width=0.6\linewidth]{images/105fa5033f5c444e.png} \end{center} \end{example*} \vspace{-1em} Can be useful to consider $p \neq \half$\ldots Recall that for the `problem of Zarankiewicz' (see \cref{sub3_2}), we had $\zaran(n, t) \le 2 n^{2 - \frac{1}{t}}$. How about a lower bound -- preferably not of the form $c \cdot n^1$ (preferably non-trivial). We could do the following: Form a random \gls{bipartite} \gls{graph} (vertex classes $X, Y$, each size $n$) by choosing \glspl{edge} independent with probability $p$. Then \[ \PP(\text{a fixed $\bipartite_{t, t} \subset G$}) = p^{t^2} .\] Also, $\#\bipartite_{t, t} = {n \choose t}^2$. So \[ \EE(\text{$\#\bipartite_{t, t}$ in $G$}) = {n \choose t}^2 p^{t^2} \le \quarter n^{2t} p^{t^2} .\] So take $p = n^{-\frac{2}{t}}$ -- gives $\EE(\#\bipartite_{t, t}) \le \quarter$. So $\PP(\text{no $\bipartite_{t, t}$ in $G$}) \ge \frac{3}{4}$. Also, $\EE(\text{\#\glspl{edge} of $G$}) = pn^2$. So \[ \PP\left(\text{\#\glspl{edge}} \ge \half pn^2\right) \ge \half .\] Hence there exists a \gls{graph} $G$ with no $\bipartite_{t, t}$ and $\edges(G) \ge \half pn^2 = \half n^{2 - \frac{2}{t}}$. Thus $\zaran(n, t) \ge \half n^{2 - \frac{2}{t}}$. But we can do better. \begin{flashcard}[zaran-lower-bound] \begin{theorem} $\zaran(n, t) \ge \cloze{\half n^{2 - \frac{2}{t + 1}}}$. \end{theorem} \cloze{\textbf{Idea:} If $G$ has $n$ \glspl{edge} and $r$ $\bipartite_{t, t}$s, remove an \gls{edge} from each $\bipartite_{t, t}$ to obtain a \gls{graph} with $m - r$ \glspl{edge} and no $\bipartite_{t, t}$.} \begin{proof} \cloze{ Form a random \gls{bipartite} \gls{graph} (vertex classes size $n$), by choosing each edge with probability $p$ independently. Let $M = \#\text{\glspl{edge}}$, $R = \#\bipartite_{t, t}$. Then \[ \EE(M) = pn^2 \qquad \text{and} \qquad \EE(R) = {n \choose t}^2 p^{t^2} \le \half n^{2t} p^{t^2} ,\] so \[ \EE(M - R) \ge pn^2 - \half n^{2t} p^{t^2} .\] Pick $p = n^{-\frac{2}{t + 1}}$: so $pn^2 = n^{2 - \frac{2}{t + 1}}$ and $n^{2t} p^{t^2} = n^{2t - \frac{2t^2}{t + 1}} = n^{2 - \frac{2}{t + 1}}$. So \[ \EE(M - R) \ge \half n^{2 - \frac{2}{t + 1}} .\] Hence there exists $G$ with $m$ \glspl{edge}, $r$ $\bipartite_{t, t}$s and $m - r \ge \half n^{2 - \frac{2}{t + 1}}$. Whence $\zaran(n, t) \ge \half n^{2 - \frac{2}{t + 1}}$. } \end{proof} \end{flashcard} This method is called `modifying a random \gls{graph}'.