%! TEX root = GT.tex % vim: tw=50 % 11/11/2023 09AM \begin{flashcard}[ramseyd-explicit-bound] \begin{corollary} $\ramseyd(s, t) \le \cloze{{s + t - 2 \choose s - 1}}$ for \cloze{all $s, t \ge 2$}. In particular, $\ramsey(s) \le \cloze{2^{2s}}$. \end{corollary} \end{flashcard} \begin{proof} Induction on $s + t$. True if $s = 2$ or $t = 2$. Given $s, t \ge 3$: \[ \ramseyd(s, t) \le \ramseyd(s - 1, t) + \ramseyd(s, t - 1) \le {s + t - 3 \choose s - 1} + {s + t - 3 \choose s - 1} = {s + t - 2 \choose s - 1}. \qedhere \] \end{proof} What about more colours? \begin{flashcard}[ramseyk-defn] \begin{definition*} \glssymboldefn{ramseyk_num}{$R(s_1, \ldots, s_k)$}{$R(s_1, \ldots, s_k)$} \cloze{For $k \ge 1$ and $s_1, \ldots, s_k \ge 2$, write} $R_k(s_1, \ldots, s_k)$ \cloze{for the least $n$ (if it exists) such that whenever $\complete_n$ is \rcoled{k}, there exists a monochromatic $\complete_{s_i}$ for some $1 \le i \le k$.} \end{definition*} \end{flashcard} \begin{flashcard}[ramseyk-thm] \begin{theorem}[Ramsey for $k$ colours] \label{ramsey_k_thm} \cloze{$\ramseyk_k(s_1, \ldots, s_k)$ exists for all $k$ and $s_1, \ldots, s_k$.} \end{theorem} \begin{proof} \cloze{``Turquoise spectacles'': Induction on $k$. $k = 1$ is trivial (or alternatively can start with $k = 2$ by using \cref{ramseys_thm}). Given $k > 1$, we'll show that $\ramseyk_k(s_1, \ldots, s_k) \le \ramseyd(s_1, \ramseyk_{k - 1}(s_1, \ramseyk_{k - 1}(s_2, \ldots, s_k))$. Indeed, given a \rcolring{k} of $\complete_n$, where $n = \ramseyd(s_1, \ramseyk_{k - 1}(s_2, \ldots, s_k))$: view the colours as `1' and `2 or 3 or \ldots or $k$'. By definition of $n$, we obtain either a $\complete_{s_1}$ coloured $1$ (done) or a $\complete_{\ramseyk_{k - 1}(s_2, \ldots, s_k)}$ coloured with $k - 1$ colours (so done by definition of $\ramseyk_{k - 1}(s_2, \ldots, s_k)$).} \end{proof} \end{flashcard} \begin{remark*} Or could redo the proof of \cref{ramseys_thm}. \end{remark*} \vspace{-1em} What about $r$-sets? Suppose we colour each \emph{triangle} red or blue -- do we get a $4$-set all of whose triangles are the same colour? \glssymboldefn{Xr}{$X^{(r)}$}{$X^{(r)}$} This is asking (in general) for a much \emph{denser} monochromatic structure. \begin{flashcard}[Xr-notation] For a set $X$ and $r = 1, 2, 3, \ldots$, write $X^{(r)} = \cloze{\{A \subset X : |A| = r\}}$\cloze{ -- the collection of all $r$-sets in $X$.} \end{flashcard} \glssymboldefn{sqb}{$[n]$}{$[n]$} \begin{flashcard}[sqb-n-notation] \fcscrap{Unless otherwise stated, }$X = [n] = \cloze{\{1, \ldots, n\}}$. \end{flashcard} \begin{flashcard}[ramseyd-r-notation] \begin{notation*} \glssymboldefn{ramsey_r}{$R^{(r)}(s, t)$}{$R^{(r)}(s, t)$} Write $R^{(r)}(s, t)$ \cloze{for the least $n$ (if it exists) such that whenever $\xr X^r$ is \rcoled{2} ($c : \xr X^r \to \{1, 2\}$), then there exists a red $s$-set (an $s$-set, all of whose $r$-sets are colour $1$) or a blue $t$-set (for each $r \ge 1$ and $s, t \ge r$).} \end{notation*} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item $\ramseyr^2(s, t) = \ramseyd(s, t)$ \item $\ramseyr^1(s, t) = s + t - 1$ (pigeonhole) \item $R^r(s, t) = R^r(t, s)$ \item $R^r(s, r) = s$ \end{enumerate} \end{remark*} \begin{flashcard}[ramsey-for-r-sets-thm] \begin{theorem}[Ramsey for $r$-sets] \cloze{ $\ramsey^r(s, t)$ exists for all $r \ge 1$ and $s, t \ge r$.} \end{theorem} \textbf{Idea:} \cloze{in proof of $r = 2$ (\nameref{ramseys_thm}), we used $r = 1$ (i.e. pigeonhole).} \begin{proof} \cloze{ Induction on $r$: $r = 1$ trivial (alternatively start at $r = 2$ using \cref{ramseys_thm}). Given $r > 1$. Induct on $s + t$ ($s = r$ or $t = r$ is straightforward). So, given $r > 1$ and $s, t > 1$, we'll show \[ \ramseyr^r(s, t) \le \ramseyr^{r - 1}(\ramseyr^r(s - 1, t), \ramseyr^r(s, t - 1)) + 1 .\] Let $a = \ramseyr^r(s - 1, t)$, $b = \ramseyr^r(s, t - 1)$, $n = \ramseyr^{r - 1}(a, b) + 1$. Given a \rcolring{2} $c$ of $\xr X^r = \xr \sq [n]^r$: \begin{center} \includegraphics[width=0.6\linewidth]{images/fd1da32a995f4487.png} \end{center} Pick $x \in X$, and put $Y = X \setminus \{x\}$. Then have induced colouring $c'$ of $\xr Y^r$: $c'(A) = c(A \cup \{x\})$, for each $A \in \xr Y^{r - 1}$. By definition of $n$, we have a red $a$-set or blue $b$-set for $c'$. If $a$-set: have $Z \subset Y$, $|Z| = a$ such that $\forall A \in \xr Z^{r - 1}$ have $c(A \cup \{x\})$ is red. Inside $Z$, by definition of $a$, there exists a red $s - 1$ set for $c$ or a blue $t - 1$ set for $c$. But a blue $t$-set for $c$ is done, and a red $(s - 1)$-set for $c$ forms, with $x$, a red $s$-set for $c$. If blue $b$-set: same argument but swapping colours. } \end{proof} \end{flashcard} \begin{remark*} ALso works for $k$ colours (e.g. by turquoise spectacles). \end{remark*} \vspace{-1em} What bounds do we get on $\ramseyr^r(s, t)$? Define functions $f_1, f_2, \ldots$ as follows: \begin{itemize} \item $f_1(x) = 2x$ \item $f_r(x) = \ub{f_{r - 1}(f_{r - 1}(\ldots f_{r - 1}}_{\text{$x$ times}}(1) \ldots ))$ for each $r > 1$. \end{itemize} So $f_2(x) = 2^x$, $f_3(x) = \ob{2^{2^{\iddots^2}}}^{x}$. What about $f_4$? \[ f_4(1), \quad f_4(2) = 2^2 = 4, \quad f_4(3) = 2^{2^{2{2^2}}} = 65536, \quad f_4(4) = \ob{2^{2^{\iddots^2}}}^{65536} \] Our bound for $\ramseyd(s, t)$ is of the form $f_2(s + t)$ and for $\ramseyr^r(s + t)$ of form $f_r(s + t)$. These very large upper bounds are often a feature of such `double inductions'. (Lower bounds, e.g. on $\ramseyd(s, t)$? See later.)