%! TEX root = GT.tex % vim: tw=50 % 09/11/2023 09AM \begin{flashcard}[general-nmf-ineq] \prompt{Inequality for plane $G$ on general surface? } \cloze{For $G$ drawn on the \gls{surf} of \gls{euler_char} $\eulerchar$, have $n - m + f \ge \eulerchar$.} \end{flashcard} \begin{flashcard}[general-planar-simple-ineq] \prompt{Prove planar graph $m, n$ inequality for general surface. } \cloze{We know $3f \le 2m$ (as usual by counting edges via faces / vertices), for $m \ge 3$. So $n - m + \frac{2m}{3} \ge \eulerchar$, i.e. $n - \frac{m}{3} \ge \eulerchar$, so $m \le (n - \eulerchar)$.} \end{flashcard} \begin{example*} We can draw $\complete_5$ on a torus: \begin{center} \includegraphics[width=0.6\linewidth]{images/860fa665bdea4e69.png} \end{center} Exercise: draw $\complete_6$ and $\complete_7$ on a torus. \end{example*} What can we say about $\chromnum(G)$? \begin{flashcard}[heawood-thm] \begin{theorem}[Heawood's Theorem] % Theorem 8 \glssymboldefn{heawood}{$H$}{$H$} \label{heawood_thm} \cloze{ Let $G$ be a \gls{graph} drawn on a \gls{surf} of \gls{euler_char} $\eulerchar \le 0$. Then \[ \chromnum(G) \le \heawood(\eulerchar) \le \left\lfloor \frac{7 + \sqrt{49 - 24\eulerchar}}{2} \right\rfloor \] } \end{theorem} \fcscrap{ \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item $\heawood(0) = 7$. So our $\complete_7$ cannot be improved, and nor can the bound $\chromnum(G) \le 7$. \item Amusingly, $\heawood(2) = 4$. \end{enumerate} \end{remark*} } \begin{proof} \cloze{Let $G$ have $\chromnum(G) = k$. Need to show $k \le \heawood(\eulerchar)$. Pick $G$ minimal (least $n$) with $\chromnum(G) = k$. So certainly $n \ge k$. Also, $\mindeg(G) \ge k - 1$ (by minimality of $G$). Now, from $m \le 3(n - \eulerchar)$ we have $2m \le 6(n - \eulerchar)$, so average \gls{v_deg} $\le 6 - \frac{\eulerchar}{2}$, and in particular $\mindeg(G) \le 6 - \frac{6\eulerchar}{2}$. Hence $k - 1 \le 6 - \frac{\eulerchar}{2} \le 6 - \frac{6\eulerchar}{k}$ (as $n \ge k$ and $\eulerchar \le 0$). So $k^2 - k \le 6k - 6\eulerchar$, i.e. $k^2 - 7k + 6\eulerchar \le 0$ -- whence bound (solve quadratic).} \end{proof} \end{flashcard} \begin{remark*} \nameref{heawood_thm} is best possible -- can draw $\complete_{\heawood(\eulerchar)}$ on surface (this is the ``Map Color Theorem'', 1960s). \end{remark*} \newpage \mychapter{Ramsey Theory} The philosophical question guiding this chapter is: \begin{center} ``Can we find some order in enough disorder?'' \end{center} \begin{example*} Suppose we have $c : \eulerchar(\complete_6) \to \{1, 2\}$ (2-coloured $\complete_6$). Can we find a triangle, all \glspl{edge} red or all \glspl{edge} blue (a \emph{monochromatic} triangle)? \begin{center} \includegraphics[width=0.6\linewidth]{images/eb67a64a72934cbb.png} \end{center} Answer: yes. Pick \gls{vertex} $x$. Have $\vdeg(x) = 5$, so there exists $\ge 3$ \glspl{edge} out of $x$ of the same colour: say $xy_1, xy_2, xy_3$ red. If any $y_i y_j$ red then we have found a red triangle $(x, y_i, y_j)$. If all $y_i y_j$ blue then we have a blue triangle $(y_1, y_2, y_3)$. \end{example*} \vspace{-1em} How about a monochromatic $\complete_4$? \begin{flashcard}[ramsey-number-defn] \begin{definition*} \glsnoundefn{ramsey_num}{Ramsey number}{Ramsey numbers} \glssymboldefn{ramsey_num}{$R(s)$}{$R(s)$} \cloze{Write} $\ramsey(s)$ \cloze{for the least $n$ \fcscrap{(if it exists) }such that whenever $\complete_n$ is 2-coloured, there exists a monochromatic $\complete_s$.}\fcscrap{ (Equivalently, least $n$ such that every \gls{graph} $G$ on $n$ vertices has $\complete_s \subset G$ or $\complete_s \subset \complement{G}$). } \end{definition*} \end{flashcard} \vspace{-1em} So the above proof shows $\ramsey(3) \le 6$. In fact, $\ramsey(3) = 6$, since there is a colouring of $\complete_5$ which has no monochromatic triangle: \begin{center} \includegraphics[width=0.6\linewidth]{images/32993601ed8146d3.png} \end{center} What about $\ramsey(4)$? We'll go for a `halfway house' of finding a red $\complete_3$ or a blue $\complete_4$. \begin{flashcard}[ramseyd-number-defn] \begin{definition*} \glssymboldefn{ramseyd_num}{$R$}{$R$} For \cloze{$s, t \ge 2$} write $\ramseyd(s, t)$ for \cloze{for the least $n$ (if it exists) such that whenever $\complete_n$ is 2-coloured, there exists red $\complete_s$ or blue $\complete_t$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\ramseyd(s, s) = \ramsey(d)$. \item $\ramseyd(s, t) = \ramsey(t, s)$. \item $\ramseyd(s, 2) = s$. \end{enumerate} \end{example*} \begin{flashcard}[ramseys-thm] \begin{theorem}[Ramsey's Theorem] % Theorem 1 \label{ramseys_thm} \cloze{$\ramseyd(s, t)$ exists $\forall s, t$. Moreover, $\ramseyd(s, t) \le \ramseyd(s - 1, t) + \ramseyd(s, t - 1) ~\forall s, t \ge 3$. } \end{theorem} \begin{proof} \cloze{Enough to show that, if $\ramseyd(s - 1, t)$ and $\ramseyd(s, t - 1)$ are finite, then \[ \ramseyd(s, t) \le \ramseyd(s - 1, t) + \ramseyd(s, t - 1) \] As then $\ramsey(s, t)$ finite for all $s, t$ (induction on $s + t$)! Let $a = \ramseyd(s - 1, t)$, $b = \ramseyd(s, t - 1)$. Given a 2-colouring of $\complete_{a + b}$: pick a \gls{vertex} $x$. Have $\vdeg(x) = a + b - 1$. So there exists $a$ red \glspl{edge} or there exists $b$ blue \glspl{edge} from $x$. If $a$ red \glspl{edge}: say $xy_1, \ldots, x y_a$ are all red. In the $\complete_a$ given by \glspl{vertex} $y_1, \ldots, y_a$. Have red $\complete_{s - 1}$ or blue $\complete_t$. If we have a blue $\complete_t$, then done. If we have a red $\complete_{s - 1}$, then when combined with $x$, we have a $\complete_s$. If $b$ blue \glspl{edge}, similar.} \end{proof} \end{flashcard} \begin{remark*} Very few of these `\glspl{ramsey_num}' $\ramseyd(s, t)$ are known exactly (see later). Question: how fast does $\ramsey(s)$ grow? \end{remark*}