%! TEX root = GT.tex % vim: tw=50 % 02/11/2023 09AM \begin{flashcard}[brooks-thm] \begin{theorem}[Brooks' Theorem] \cloze{ Let $G$ be a \gls{connected} \gls{graph}, not a \gls{complete_graph} or an odd length \gls{cycle}. Then $\chromnum(G) \le \maxdeg(G)$. } \end{theorem} \begin{proof} \cloze{ Without loss of generality, assume $G$ is \kreg{\maxdeg} (by \nameref{lec12_final_remark}), and $\maxdeg(G) \ge 3$ ($\maxdeg(G) = 1$ is trivial, and $\maxdeg(G) = 2$ implies $G$ is a \gls{cycle}, so trivial). If not true, let $G$ be a smallest counterexample (e.g. $\size{G}$ minimal). Without loss of generality, $G$ has no \gls{cutvertex}. Indeed, suppose $x$ is a \gls{cutvertex}. Let \glspl{conn_comp} of $G - x$, together with $x$, be $G_1, \ldots, G_k$. Then each $G_i$ is \rcolable{\maxdeg(G)} (since each $G_i$ is not \kreg{\maxdeg(G)}, as $\vdeg_{G_i}(x) \le \maxdeg(G) - 1$ $\forall n$) Hence $G$ is \rcol{\maxdeg(G)}. \textbf{Case 1:} $G$ is \con{3}: Want an ordering of the \glspl{vertex} as $x_1, \ldots, x_n$ such that for all $i < n$ there exists $j > i$ with $x_i x_j \in E$ and two members of $\nbd(x_n)$ get the same colour -- then done (as before, by running greedy). Pick any \gls{vertex} $x_n$. Cannot have $\nbd(x_n)$ a \gls{complete_graph}, elese $\nbd(x_n) \cup \{x_n\}$ is a $\complete_{\maxdeg(G) + 1}$, a contradiction as $G$ is not a \gls{complete_graph} (and is \gls{connected}), so some \gls{vertex} in this $\complete_{\maxdeg(G) + 1}$ is joined to some point outside it \contradiction. Choose $x_1, x_2 \in \nbd(x_n)$ with $x_1 x_2 \not\in E$. Then $G - \{x_1, x_2\}$ \gls{connected} (as $G$ is \con{3}), so can order it as $x_3, \ldots, x_n$ such that each $x_i$ has a forward edge (as before). Now run greedy algorithm on $x_1, \ldots, x_n$. This completes the first case. \textbf{Case 2:} $G$ not \gls{connected}: Let $\{x, y\}$ be a \gls{separator} of size $2$ (i.e. $G - \{x, y\}$ \glsref[connected]{disconnected}). Let $G_1, \ldots, G_k$ be \glspl{conn_comp} of $G - \{x, y\}$ with $x, y$ added. Then each $G_i$ is \rcol{\maxdeg(G)} (since $G_i$ not \kreg{\maxdeg(G)}, as $\vdeg_{G_i}(x), \vdeg_{G_i}(y) \le \maxdeg(G) - 1$ for all $i$). If $xy \in E$, then each of these \glspl{colring} give $x, y$ distinct \glspl{col}, so can \glsref[col]{recolour} them and combine to obtain a \rcolring{\maxdeg(G)} of $G$. So may assume $xy \not\in E$. Now, if each $G_i$ has $\vdeg_{G_k}(x) \le \maxdeg(G) - 2$ or $\vdeg_{G_i}(y) \le \maxdeg(G) - 2$. Then by \glsref[colring]{recolouring} we may assume that the \rcolring{\maxdeg(G)} of $G_i$ gives $x, y$ distinct \glspl{col} -- so done as above. Hence some $G_i$ has $\vdeg_{G_i}(x) = \vdeg_{G_i}(y) = \maxdeg(G) - 1$ -- say $i = 1$. So $k = 2$, and $\vdeg_{G_2}(x) = \vdeg_{G_2}(y) = 1$. Let $\nbd_{G_2}(x) = \{u\}$. Then $\{y, u\}$ is a \gls{separator}, not of this form. \begin{center} \includegraphics[width=0.6\linewidth]{images/57bee270797d459d.png} \end{center} } \end{proof} \end{flashcard} \newpage \section{Chromatic Polynomials} \begin{flashcard}[chrom-poly-defn] \begin{definition*}[Chromatic polynomial] \glsnoundefn{chrom_poly}{chromatic polynomial}{chromatic polynomials} \glssymboldefn{chrom_poly}{$P$}{$P$} \cloze{ For a \gls{graph} $G$, and for $t = 1, 2, 3, \ldots$, write $P_G(t)$ for the number of \rcolrings{t} of $G$.\fcscrap{ (So $\chromnum(G)$ is the least $t$ such that $P_G(t) \neq 0$).} $P_G$ is \emph{chromatic polynomial} of $G$. } \end{definition*} \end{flashcard} \vspace{-1em} Why is it a polynomial? \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\chrompoly_{\complete_n}(t) = t(t - 1)(t - 2) \cdots (t - n + 1)$. \item $\chrompoly_{\emptygraph_n}(t) = t^n$. \item $P_{\Ppath_n}(t) = t(t - 1)^n$. Similarly, for $T$ a \gls{tree} on $n$ \glspl{vertex}, $\chrompoly_T(t) = t(t - 1)^{n - 1}$ (remove a \gls{leaf} and induct). \item $\chrompoly_{\cycle_n}(t) = ?$. For the first \gls{vertex}, we have $t$ choices, then $t - 1$ for the next, then $t - 1$ for the next and so on, \ldots until we get to the final \gls{vertex}. Then the number of choices depends on whether the two \glspl{neighbour} are \glsref[col]{coloured} the same colour. It turns out that it is a bit complicated to work out the \gls{chrom_poly} in this case. \end{enumerate} \end{example*} \begin{flashcard}[contraction-defn] \begin{definition*}[Contraction] For a \gls{graph} $G$ with \gls{edge} $e = xy$, the \emph{contraction} $G / e$ is \cloze{obtained by replacing the \glspl{vertex} $x$ and $y$ by a single \gls{vertex} $e$, joined to each \gls{neighbour} of $x$ or $y$.} \end{definition*} \end{flashcard} \begin{flashcard}[deletion-contraction-lemma] \begin{lemma}[deletion-contraction] \label{deletion_contraction} \cloze{ Let $G$ be a \gls{graph}, $e$ an \gls{edge}. Then \[ \chrompoly_G = \chrompoly_{G - e} - \chrompoly_{G / e} .\] (This relation is sometimes called \emph{cut-fuse} relation). } \end{lemma} \begin{proof} \cloze{ \glsref[col]{Colourings} of $G - e$ with endpoints of $e$ different \glspl{col} corresponds exactly to \glspl{colring} of $G$. Also, \glspl{colring} of $G - e$ with endpoints of $e$ the same \gls{col} correspond to \glspl{colring} of $G / e$. Hence $\forall t$, \[ \chrompoly_{G - e}(t) = \chrompoly_G(t) + \chrompoly_{G / e}(t) \qedhere \] } \end{proof} \end{flashcard} \begin{note*} We cannot use \nameref{deletion_contraction} (together with $\chrompoly_{\emptygraph_n}(t) = t^n$) to define $\chrompoly_G$, as it might not be well-defined. \end{note*} \begin{proposition} Let $G$ be a \gls{graph} on $n$ \glspl{vertex}, with $m$ \glspl{edge}. Then $\chrompoly_G$ is a polynomial in $t$, of \gls{v_deg} $n$, leading terms $t^n - mt^{n - 1} + \cdots$. \end{proposition} \begin{proof} Induction on $\edges(G)$. $\edges(G) = 0$ trivial ($\chrompoly_{\emptygraph_n}(t) = t^n$). Given $G$, $\edges(G) > 0$, pick $e \in E$. Have for all $t$, (\nameref{deletion_contraction}) \[ \chrompoly_G(t) = \chrompoly_{G - e}(t) - \chrompoly_{G / e}(t) .\] By induction, \begin{align*} \chrompoly_{G - e}(t) &= t^n - (m - 1)t^{n - 1} + \cdots \\ \chrompoly_{G / e} &= t^{n - 1} - \cdots \end{align*} so \[ \chrompoly_G(t) = t^n - m t^{n - 1} + \cdots \qedhere \] \end{proof}