%! TEX root = GT.tex % vim: tw=50 % 28/10/2023 09AM \glssymboldefn{blown_up_complete}{$K_r(t)$}{$K_r(t)$} Write $K_r(t) = K_r(rt)$ ($\complete_r$ but with each point `blown up' to a set of size $t$). \begin{center} \includegraphics[width=0.6\linewidth]{images/4ee84fd561ac4def.png} \end{center} \nameref{turans_thm} says \[ \frac{e(G)}{{n \choose 2}} > 1 - \frac{1}{r - 1} \implies G \supset \complete_r \] What if $\frac{e(G)}{{n \choose 2}} > 1 - \frac{1}{r - 1} + 0.01$? Remarkably, this implies that $G \supset \bucomplete_r(1000)$ ($n$ large). \begin{theorem*}[Erd\H{o}s-Stone Theorem] \label{erdos_stone_thm} For all integers $r$, $t$, and $\eps > 0$, there exists $n_0(r, \eps, t)$ such that for all $n \ge n_0$, \[ |G| = n, \frac{e(G)}{{n \choose 2}} > 1 - \frac{1}{r - 1} + \eps \implies G \supset \bucomplete_r(t) .\] \end{theorem*} \begin{proof}[Sketch proof] Have $G$, $|G| = n$, average \gls{v_deg} $> \left(1 - \frac{1}{r - 1} + \eps\right)n$. \begin{enumerate}[(1)] \item Pass to a \gls{subgraph} $H$ on $n'$ \glspl{vertex} ($n'$ still large), with $\mindeg(H) > \left( 1 - \frac{1}{r - 1} + \eps \right) n'$ (similar to \es[7]{1}). \item $H$ contains a $\bucomplete_{r - 1}(t')$ ($t'$ large), = $K$ say (induction on $r$). \item Each $x \in H - K$ has $\ge t$ neighbours in each class of $K$ (by $\mindeg(H)$). \item Get $t$ points $x_1, \ldots, x_t \in H - K$, each joined to same $t$-set in each class of $K$ (by pigeonhole). So have $\bucomplete_r(t)$. \qedhere \end{enumerate} \end{proof} Given $H$, let $r$ be the least such that $H$ is \rpartite{r}. Then $H \not\supset \turan_{r - 1}(n)$ (as $\turan_{r - 1}(n)$ is \rpartite{(r - 1)}), so \[ \frac{\ex(n, H)}{{n \choose 2}} \ge 1 - \frac{1}{r - 1} .\] However, $H \subset \bucomplete_r(t)$, some $t$ (as $H$ is \rpartite{r}), so \nameref{erdos_stone_thm} tells us that \[ \frac{e(G)}{{n \choose 2}} > 1 - \frac{1}{r - 1} + \eps \implies G > H .\] \textbf{Conclusion:} \[ \frac{\ex(n, H)}{{n \choose 2}} \to 1 - \frac{1}{r - 1} \] as $n \to \infty$. \begin{remark*} If $H$ bipartite, this says that $\frac{\ex(n, H)}{{n \choose 2}} \to 0$. How fast does $\ex(n, H)$ grow? This is unknown even for many very simple $H$, for example $C_{2k}$, $k \ge 6$. \end{remark*} \vspace{-1em} This marks the end of this subsection of non-examinable content. \newpage \mychapter{Colourings} \newpage \begin{flashcard}[r-colouring-defn] \begin{definition*}[$r$-colouring] \glssymboldefn{colset}{$[r]$}{$[r]$} \glsnoundefn{r_col}{$r$-colouring}{$r$-colouring} \glspropdefn{chrom_num}{chromatic number}{\gls{graph}} \glssymboldefn{chrom_num}{$\chi(G)$}{$\chi(G)$} \glsnoundefn{colring}{colouring}{colourings} \glsnoundefn{col}{colour}{colours} \cloze{ An \emph{$r$-clouring} of a \gls{graph} $G$ is a function $c : V(G) \to [r] \defeq = \{1, \ldots, r\}$ such that $xy \in E(G) \implies c(x) \neq c(y)$. The \emph{chromatic number} $\chromnum(G)$ of $G$ is the least $r$ for which $G$ has an \gls{r_col}. } \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\chromnum(\Ppath_n) = 2$. \item $\chromnum(C_n) = \begin{cases} 2 & \text{$n$ even} \\ 3 & \text{$n$ odd} \end{cases}$. \item $\chromnum(K_n) = n$ (each point gets a different colour). \item $T$ a \gls{tree} $\implies \chromnum(T) = 2$ (for example remove a \gls{leaf} + induction). \item $\chromnum(\bipartite_{m, n}) = 2$. \end{enumerate} \end{example*} \begin{note*} $G$ \gls{bipartite} $\implies$ $G$ is \glsref[r_col]{$2$-colouring}. Conversely, $G$ \glsref[r_col]{$2$-colourable} $\implies$ $G$ \gls{bipartite} (as can take $X = \{x : c(x) = 1\}$, $Y = \{x : c(x) = 2\}$). So, $G$ \gls{bipartite} $\iff$ $\chromnum(G) \le 2$. In general, $G$ \rpartite{r} $\iff$ $\chromnum(G) \le r$. So $\chromnum(G)$ is the least $r$ such that $G$ is \rpartite{r}. Thus \hyperlink{erdos_stone_thm}{Erd\H{o}s-Stone Corollary} says \[ \frac{\ex(n, H)}{{n \choose 2}} \to 1 - \frac{1}{\chromnum(H) - 1} \] \end{note*} \vspace{-1em} For any $G$ on $n$ \glspl{vertex}, have $\chromnum(G) \le n$. But can often improve this: \begin{flashcard}[colouring-max-degree-prop] \begin{proposition} \label{colouring_max_deg} For any \gls{graph} $G$, have $\chromnum(G) \le \cloze{\maxdeg(G) + 1}$. \end{proposition} \begin{proof} \cloze{ Order $\vset(G)$ as $x_1, \ldots, x_n$, and colour each $x_i$ in turn. When we come to colour $x_i$, it has $\le \maxdeg(G)$ \glspl{neighbour}, so we have $\le \maxdeg(G)$ colours to avoid. } \end{proof} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Can have equality, for example \gls{complete_graph} or odd \gls{cycle}. \item Often $\chromnum(G)$ is much less than $\maxdeg(G)$, for example $\bipartite_{1,n - 1}$. \item Could view \cref{colouring_max_deg} as an application of the \emph{greedy algorithm} on ordering $x_1, \ldots, x_n$: when we came to colour \gls{vertex} $x_i$, we use least colour available. \item Greedy might use $> \chromnum(G)$ colours, for example \begin{center} \includegraphics[width=0.6\linewidth]{images/c7195def88484716.png} \end{center} \item No `formula' for $\chromnum(G)$. \end{enumerate} \end{remark*} \newpage \section{Colouring Planar Graphs} \begin{flashcard}[6-colour-thm] \begin{proposition}[$6$-colour Theorem] Let $G$ be \gls{planar}. Then $\chromnum(G) \le 6$. \end{proposition} \begin{proof} \cloze{ Clearly this works if $|G| \le 6$. Hence consider $|G| = n \ge 7$. We claim $\mindeg(G) \le 5$. Indeed, we have $\edges(G) \le 3n - 6$, so $\sum_{x \in G} \vdeg(x) \le 6n - 12$, so there is an $x$ with $\vdeg(x) \le 5$. Choose $x \in G$ with $\vdeg(x) \le 5$, and let $G' = G - x$. We can \glsref[r_col]{$6$-colour} $G'$ by induction on $n$. Now, $|\nbd(x)| \le 5$, so $\nbd(x)$ has at most $5$ colours. Hence we can colour $x$ with a $6$-th colour. } \end{proof} \end{flashcard} How about $5$ colours? If $\text{G \gls{planar}} \implies \mindeg(G) \le 4$, then the same proof would work. However this is not true, for example the icosahedron has $\mindeg(G) = 5$ (or a football).