%! TEX root = GT.tex % vim: tw=50 % 26/10/2023 09AM Note that there exist many other proofs of \nameref{turans_thm} (which are non-trivially different, and many of which are as beautiful as this one). \subsection{The problem of Zarankiewicz} \label{sub3_2} This is the ``\gls{bipartite} version'' of \nameref{turans_thm}: How many \glspl{edge} can a \gls{bipartite} \gls{graph} ($n$ \glspl{vertex} in each class) have if it does not contain $\bipartite_{t, t}$? \begin{example*} $t = 2$, \gls{graph} has no $\bipartite_{2, 2} \gcong C_4$, so could take $G = C_{24}$. \end{example*} \glssymboldefn{zaran}{Z}{Z} Write $\zaran(n, t)$ for the maximum. Does $\zaran(n, t)$ grow quadratically ($t$ fixed, $n \to \infty$)? \begin{flashcard}[zaran-bound-thm] \begin{theorem} \label{zaran_bound} Let $t \ge 2$. Then $\zaran(n, t) \le \cloze{2 n^{2 - \frac{1}{t}}}$ \cloze{for $n$ sufficiently large.} \end{theorem} \begin{proof} \cloze{ Let $G$ be \gls{bipartite}, \gls{vertex} classes $X$, $Y$. ($|X| = |Y| = n$), $G \not\supset \bipartite_{t, t}$. Let the \glsref[v_deg]{degrees} in $X$ be $d_1, \ldots, d_n$. Without loss of generality, $d_i \ge t - 1 ~\forall i$ (if $d_i \le t - 2$ then add \glspl{edge} to that \gls{vertex} to make $d_i = t - 1$). For given $A \subset Y$, $\size{A} = t$, how many $x \in X$ have $\nbd(X) \supset A$? Must be $\le t - 1$, else $G \supset \complete_{t, t}$. Thus, the number of $(x, A)$ with $x \in X$, $A \subset Y$, $|A| = t$, $A \subset \nbd(x)$ is $\le (t - 1) {n \choose t}$. But each $x \in X$ belongs to exactly ${\vdeg(x) \choose t}$ such $(x, A)$. So $\sum {d_i \choose t} \le (t - 1) {n \choose t}$. Now, the function ${x \choose t} = \frac{x(x - 1) \cdots (x - t + 1)}{t!}$ is convex for $x \ge t - 1$. This is because if we let $y = x - t + 1$, then this fraction is $\frac{(y + t - 1) \cdots y}{t!}$, a non-negative linear combination of powers of $y$. So $\sum {d_i \choose t} \ge n {d \choose t}$, where $d$ is the average of the $d_i$ (noting $\edges(G) = nd$). Whence $n {d \choose t} \le (t - 1) {n \choose t}$. Thus \[ \frac{n(d - t + 1)^t}{t!} \le \frac{(t - 1)n^2}{t!} ,\] which can be manipulated to give \[ d \le (t - 1)^{\frac{1}{t}} n^{1 - \frac{1}{t}} + t - 1 \] so $d \le 2n^{1 - \frac{1}{t}}$ (for $n$ large), as required. } \end{proof} \end{flashcard} Does $\zaran(n, t)$ actually grow at rate $n^{2 - \frac{1}{t}}$ (fixed $t$, $n \to \infty$)? \begin{example*} $t = 2$. Our upper bound is $\zaran(n, 2) \le c n^{3/2}$. Lower bound? Certainly $\zaran(n, 2) \ge cn^1$ (for example by taking $2n$-\gls{cycle}). What about $\zaran(n, 2) \ge n^{1.01}$? This is not at all obvious. In fact, we do have $\zaran(n, 2) \ge c n^{3/2}$ (\glspl{graph}) from algebra-projective planes). \end{example*} \begin{example*} $t = 3$. Our upper bound is $\zaran(n, 3) \le cn^{5/3}$. In fact, it turns out that $\frac{5}{3}$ is correct (but even harder than the $t = 2$ case). \end{example*} \begin{example*} $t = 4$. Noone knows! \end{example*} \subsection{The Erd\H{o}s-Stone Theorem (non-examinable)} Note that this subsection is entirely non-examinable. \glssymboldefn{erdos_stone}{EX}{EX} For a fixed \gls{graph} $H$, write $\ex(n, H)$ for the maximum value of $\edges(G)$ where $\size{G} = n$, $G \not\supset H$. \begin{example*} \nameref{turans_thm} says \[ \ex(n, \complete_k) \sim \left( 1 - \frac{1}{k -1 } \right) {n \choose 2} \] or more precisely, \[ \frac{\ex(n, \complete_k)}{{n \choose 2}} \to 1 - \frac{1}{k - 1} \] as $n \to \infty$. We call the left hand side of the above limit the \emph{density} of $G$. \cref{min_deg_implies_ham} says that \[ \ex(n, P_k) \sim \frac{n(k - 1)}{2} ,\] so \[ \frac{\ex(n, P_k)}{{n \choose 2}} \to 0 \] as $n \to \infty$. \end{example*} \vspace{-1em} \textbf{General question:} How does $\ex(n, H)$ behave as $n \to \infty$? For given $H$, let $r$ be the least integer such that $H$ is \rpartite{r}. For example $H$ \gls{bipartite} has $r = 2$. $\cycle_7$ has $r = 3$ (it is \rpartite{3} but not \gls{bipartite}).