%! TEX root = GT.tex % vim: tw=50 % 05/10/2023 9AM % Course overview % CH1: INTRODUCTION % CH2: CONNECTIVITY & MATCHINGS % CH3: EXTREMAL PROBLEMS % CH4: COLOURINGS % CH5: RAMSEY THEORY % CH6: RANDOM GRAPHS % CH7: ALGEBRAIC METHODS \mychapter{Introduction} \section{General Words of Advice} This course is meant to be quite elegant. Understanding the proofs in this course is essential. Exam questions will be about problems where you apply proof methods seen in lectured proofs. Proofs will be elegant, and will generally not involve calculations. We will use matrices sometimes (and in particular we may talk about eigenvalues) but you should never have to calculate a determinant of a matrix on any example sheet or exam question. \subsection{Basic Definitions} \begin{flashcard}[graph-defn] \begin{definition*}[Graph] \glsnoundefn{graph}{graph}{graphs} \cloze{ A \emph{graph} is a pair $(V, E)$, where $V$ is a set and $E$ is a \fcemph{subset} of $V^{(2)} = \{(x, y) : x, y \in V, x \neq y\}$, the \fcemph{unordered pairs} from $V$. \glsnoundefn[graph]{vertex}{vertex}{vertices} \glsnoundefn[graph]{edge}{edge}{edges} $V$ is the \fcemph{vertex set} of $G$ and $E$ is the \fcemph{edge set} of $G$. } \end{definition*} \end{flashcard} \begin{example*} The graph below has $V = \{x_1, x_2, x_3, x_4, x_5\}$, $E = \{\{x_1, x_2\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_3, x_4\}, \{x_4, x_5\}\}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/494d5dfa635911ee.png} \end{center} \end{example*} \begin{flashcard}[graph-order-defn] \begin{definition*}[Order of a graph] \cloze{The \emph{order} of $G$ is $|G| = |V|$.} \end{definition*} \end{flashcard} \begin{flashcard}[graph-size-defn] \begin{definition*}[Size of a graph] \cloze{The size of $G$ is $e(G) = |E|$.} \end{definition*} \end{flashcard} \subsubsection*{Notes} \begin{enumerate}[(1)] \item No self loops (edges starting and ending at the same vertex). \item No multiple edges (between every pair of vertices, there are exactly 0 or 1 edges). \item No directed edges. \end{enumerate} \subsubsection*{Examples} \begin{enumerate}[(1)] \item \glsnoundefn{empty_graph}{empty graph}{empty graphs} \glssymboldefn{empty_graph}{$E$}{$E$} The \emph{empty graph} $E_n$: $V = \{x_1, \ldots, x_n\}$, $E = \emptyset$. So $|E_n| = n$, $e(E_n) = 0$. \begin{center} \includegraphics[width=0.3\linewidth] {images/848892b2635a11ee.png} \end{center} \glsnoundefn{complete_graph}{complete graph}{complete graphs} \glssymboldefn{complete_graph}{complete graph}{complete graph} \item The \emph{complete graph} $K_n$: $V = \{x_1, \ldots, x_n\}$, $E = V^{(2)}$, so $|K_n| = n$, $e(K_n) = {n \choose 2}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/91055db8635a11ee.png} \end{center} \item The \emph{path of length $n$}, $P_n$: $V = \{x_1, \ldots, x_{n + 1}\}$, $E = \{x_1 x_2, x_2 x_3, \ldots, x_n x_{n + 1}\}$, so $|P_n| = n + 1$, $e(P_n) = n$. \begin{center} \includegraphics[width=0.3\linewidth] {images/9bcd61f0635a11ee.png} \end{center} \glsnoundefn{cycle}{cycle}{cycles} \glssymboldefn{cycle}{$C$}{$C$} \item The \emph{$n$-cycle} $C_n$: $V = \{x_1, \ldots, x_n\}$, $E = \{x_1 x_2, x_2 x_3, \ldots, x_{n - 1} x_n, x_n x_1\}$, so $|C_n| = n$, $e(C_n) = n$. \begin{center} \includegraphics[width=0.3\linewidth] {images/d699ed9e635a11ee.png} \end{center} \end{enumerate} \begin{flashcard}[graph-isomorphism] \begin{definition*}[Graph Isomorphism] \cloze{ Say graphs $G = (V, E)$ and $H = (V', E')$ are \emph{isomorphic} if there exists bijection $f : V \to V'$ such that $xy \in E \iff f(x)f(y) \in E'$. } \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth] {images/6c9c9a76635b11ee.png} \end{center} \end{example*} \begin{flashcard}[subgraph-defn] \begin{definition*}[Subgraph] \glsnoundefn{subgraph}{subgraph}{subgraphs} \cloze{ Say $H$ is a \emph{subgraph} of $G$ if $V' \subset V$, $E' \subset E$. } \end{definition*} \end{flashcard} \begin{notation*} For $G = (V, E)$ and $xy \in E$, write $G - xy = (V, E \setminus \{x, y\})$. \end{notation*} \begin{notation*} For $G = (V, E)$ and $xy \in V^{(2)} \setminus E$, write $G + xy = (V, E \cup \{x, y\})$. \end{notation*} \begin{flashcard}[neighbous-defn] \begin{definition*}[Neighbours] \glsadjdefn{adj_v}{adjacent}{vertices} \glsnoundefn{neighbour}{neighbour}{neighbours} \cloze{If $xy \in E$, say $x$, $y$ are \emph{adjacent} or \emph{neighbours}.} \end{definition*} \end{flashcard} \begin{flashcard}[neighbourhood-defn] \begin{definition*}[Neighbourhood] \glssymboldefn{nbd}{$\Gamma$}{$\Gamma$} \cloze{For $x \in G$, the \emph{neighbourhood} of $x$ is $\Gamma(x) = \{y \in G : xy \in E\}$.} \end{definition*} \end{flashcard} \begin{flashcard}[vertex-degree-defn] \begin{definition*}[Vertex degree] \glspropdefn{v_deg}{degree}{vertex} \glssymboldefn{v_deg}{degree}{vertex} \cloze{For $x \in G$, the \emph{degree} of $x$ is $d(x) = |\Gamma(x)|$.} \end{definition*} \end{flashcard} \begin{flashcard}[degree-sequence-defn] \begin{definition*}[Degree Sequence] \cloze{ If $V = \{x_1, \ldots, x_n\}$ then the \emph{degree sequence} of $G$ is $d(x_1), \ldots, d(x_n)$. } \end{definition*} \end{flashcard} \begin{flashcard}[min-max-degree] \begin{definition*}[Minimum and Maximum Degree] \glssymboldefn{min_deg}{$\delta$}{$\delta$} \glssymboldefn{max_deg}{$\Delta$}{$\Delta$} \cloze{ $G$ has \emph{maximum degree} $\Delta(G) = \max\{d(x_1), \ldots, d(x_n)\}$ and \emph{minimum degree} $\delta(G) = \min\{d(x_1), \ldots, d(x_n)\}$. } \end{definition*} \end{flashcard} \begin{flashcard}[k-regular-defn] \begin{definition*}[Regular Graph] \glsadjdefn{regular}{regular}{\gls{graph}} \cloze{ If the degree of each vertex in $G$ is $k$, then we say that $G$ is \emph{$k$-regular} (or just \emph{regular}). } \end{definition*} \end{flashcard} \vspace{-1em} \noindent For example, $C_n$ is $2$-regular, and $K_n$ is $(n - 1)$-regular. In this course, unless otherwise stated, $V$ is finite (we will study infinite graphs briefly). \subsection{Connectedness} \begin{flashcard}[path-defn] \begin{definition*}[Path] \glsnoundefn{path}{path}{paths} \cloze{ For $x, y \in G$, an $x-y$ path is a sequence $x_1, \ldots, x_k$ ($k \ge 1$) of distinct vertices of $G$ such that $x_1 = x$, $x_k = y$ and $x_i x_{i + 1} \in E \forall i$. Its \emph{length} is $k - 1$. } \end{definition*} \end{flashcard} \begin{flashcard}[connected-squiggle] \begin{notation*} Write $x \sim y$ if \cloze{there exists a path from $x$ to $y$ (an $x-y$ path).} \end{notation*} \end{flashcard} \vspace{-1em} \noindent Note that this is an equivalence relation. \begin{remark*} Given an $x-y$ path and a $y-z$ path, concatenating them does \emph{not} necessarily give an $x-z$ path. \begin{center} \includegraphics[width=0.6\linewidth] {images/a71df82c635e11ee.png} \end{center} However, it always \emph{contains} an $x-z$ path -- indeed, if we set $i$ to be the least $1 \le i \le k$ such that there exists $k \le j \le l$ with $x_j = x_k$, then $x_1, \ldots, x_i, x_{j + 1}, \ldots, x_l$ is an $x-z$ path. \end{remark*} \begin{flashcard}[connected-components-defn] \begin{definition*}[Component] \glsnoundefn{conn_comp}{component}{components} \cloze{ The equivalence classes of $\sim$ are the \emph{components} of $G$. The component $[x]$ of a vertex is $[x] = \{y : \exists \text{$x-y$ path in $G$}\}$. } \end{definition*} \end{flashcard} \begin{flashcard}[connected-graph-defn] \begin{definition*}[Connected Graph] \glsadjdefn{connected}{connected}{graph} \cloze{Say $G$ is connected if $\forall x, y \in G$, there exists an $x-y$ path in $G$. In other words, has one component \fcemph{or has no vertices}.} \end{definition*} \end{flashcard} \begin{flashcard}[walk-defn] \begin{definition*}[Walk] \glsnoundefn{walk}{walk}{walks} \cloze{An $x-y$ walk is a sequence $x_1, \ldots, x_k$ ($k \ge 1$) such that $x_1 = x$, $x_k = y$ and $x_i x_{i + 1} \in E \forall i$.} \end{definition*} \end{flashcard} \vspace{-1em} \noindent So a walk is a path where we allow repeats. \begin{remark*} There exists a walk from $x$ to $y$ if and only if there exists a path from $x$ to $y$. \end{remark*}