%! TEX root = TA.tex % vim: tw=50 % 20/01/2024 12PM \begin{definition*} Let $(X, d)$, $(Y, e)$ be metric spaces. We say $f : X \to Y$ is continuous if given $x \in X$, $\eps > 0$ there exists $\delta(\eps, x)$ such that \[ d(x', x) < \delta \implies e(f(x), f(x')) < \eps .\] \end{definition*} \begin{proposition*} This is equivalent to the ``if $U$ open in $Y$ then $f^{-1}(U)$ open in $X$'' definition. \end{proposition*} \begin{proof} We first show that if $f$ satisfies the first definition, then it satisfies the second. Suppose $U$ open in $Y$. If $x \in f^{-1}(Y)$ then $f(x) \in U$ so there existst $\eps > 0$ such that $B_Y(f(x), \eps) \subseteq U$. Hence there exists $\delta$ such that $f(B(x, \delta)) \subseteq B_Y(f(x), \eps)$, so $B(x, \delta) \subseteq f^{-1}(U)$. So $f^{-1}(U)$ is open. For the other direction: if $x \in X$ then given $\eps > 0$, $B(f(x), \eps)$ is open so $f^{-1}(B(f(x), \eps))$ is open. $x \in f^{-1}(B(f(x), \eps))$ so there exists $\delta$ such that $B(x, \delta) \subseteq f^{-1}(B(f(x), \eps))$ and we recover the $\eps, \delta$ definition. \end{proof} We introduce an idea much used in the course: \begin{flashcard}[distance-to-set-defn] \begin{definition*}[Distance to $A$] \cloze{If $A \subseteq \RR^n$ is closed and non-empty, we define \[ d(x, A) = \inf_{a \in A} \|x - a\| .\]} \end{definition*} \end{flashcard} \begin{remark*} \begin{enumerate}[(1)] \item $d(x, A) = 0 \iff x \in A$: the backwards direction is trivial, and for the forwards direction, if $d(x, A) = 0$ then there exists $a_n \in A$ with $d(x, a_n) \to 0$. But $A$ is closed. \item $x \mapsto d(x, A)$ is continuous. \begin{proof} Let $\eps > 0$ then for given $x, y$ there exists $a \in A$ such that $\|x - a\| \le d(x, A) + \frac{\eps}{2}$. So $\|y - a\| \le \|x - a\| + \|y - x\| \le d(x, A) + \|x - y\| + \frac{\eps}{2}$. So $d(y, A) \le \|y - x\| + d(x, A) + \frac{\eps}{2}$. Since $\eps$ is arbitrary, \[ d(y, A) \le d(x, A) + \|x - y\| \] Similarly, $d(x, A) \le d(y, A) + \|x - y\|$, so \[ |d(x, A) - d(y, A)| \le \|x - y\| . \qedhere \] \end{proof} \end{enumerate} \end{remark*} \vspace{-1em} Now we move towards more interesting results. \begin{theorem*} If $E \subseteq \RR^n$ is compact and $f : E \to \RR^n$ is continuous, then $f(E)$ is compact. \end{theorem*} \begin{proof} If $y_n \in f(E)$ then $y_n = f(x_n)$ for some $x_n \in E$. By \nameref{BW}, there exists $n(j) \to \infty$ and $x \in E$ such that $x_{n(j)} \to x$. So $y_{n(j)} = f(x_{n(j)}) \to f(x) \in E$. \end{proof} \begin{corollary*} If $E \subseteq \RR^n$ is compact and non-empty and $f : E \to \RR$ is continuous then $f$ is bounded and attains its bounds. \end{corollary*} \begin{proof} $f(E)$ is compact in $\RR$ so closed and bounded. Further since $f(E)$ is bounded above (and non-empty), $f(E)$ has a supremum $\alpha$ so there exists $e_n$ such that $f(e_n) \to \alpha$. By compactness, there exists $n(j) \to \infty$ and $e$ such that $e_{n(j)} \to e$ so $f(e) = \alpha$. \end{proof} \begin{theorem*}[Fundamental Theorem of Algebra] \label{FTA} If $P$ is a non-constant polynomial then it has a root. \end{theorem*} \begin{lemma*} If $P$ is a non-constant polynomial then $|P(z)| \to \infty$ as $|z| \to \infty$. \end{lemma*} \begin{proof} \begin{align*} P(z) &= \sum_{j = 0}^n a_j z^j \\ &= z^n \left( a_n - \sum_j a_j z^{j - n} \right) \end{align*} $a_n \neq 0$, $n \ge 1$. Note \[ a_n - \sum_j a_j z^{j - n} \to a_n \] as $|z| \to \infty$, hence since $|z^n| \to \infty$ as $|z| \to \infty$, we have $|P(z)| \to \infty$ as $|z| \to \infty$. \end{proof} \begin{lemma*} In particular we can find an $R$ such that $|P(z)| > |P(0)|$ for all $|z| \ge R$. \end{lemma*} \begin{proof} By compactness there exists $|\alpha| \le R$ such that \[ |P(z)| \ge |P(\alpha)| ~\forall |z| \le R .\] But $|P(z)| \ge |P(0)| \ge |P(\alpha)| ~\forall |z| \ge R$. So $|P(\alpha)| \le |P(z)| ~\forall z$. \end{proof} We now show that if $\alpha$ is a minima of $|P(z)|$ then $P(\alpha) = 0$ (to some extent the rest of the proof is a matter of personal preference). \begin{remark*} By considering $P(z + \alpha)$ if necessary, we may suppose that $|P(0)| \le |P(z)|$ for all $z$. If $P(0) = 0$ we are done (using the previous two lemmas, we know that $|P(z)|$ has a global minimum, because the minimum on $B(0, R)$, which is achieved by compactness, must be a global minimum). \end{remark*} \begin{proof}[Proof of \nameref{FTA}] By the remark, assume $|P(0)| \le |P(z)|$ for all $z$. If $P(0) = 0$ we are done. If not, then \[ P(z) = a_0 + \sum_{j = 1}^n a_j z^j \] with $a_0 \neq 0$. By considering $\frac{P(z)}{a_0}$ we may suppose $a_0 = 1$ and that \[ P(z) = 1 + a_k z^k + \sum_{j = k + 1}^n a_j z^j \] with $a_k \neq 0$. By considerng $P(r e^{i\theta} z)$ for suitable $r, \theta$ we may suppose $a_k = -1$. So \[ P(z) = 1 - z^k + \sum_{j = k + 1}^n z^j \] Since $\frac{\sum_{j = k + 1}^n a_j z^j}{z^k} \to 0$ as $z \to 0$, there exists $\delta > 0$ such that \[ \left| \sum_{j = k + 1}^n a_j z^j \right| < \frac{|z|^k}{2} \] for $|z| < \delta$. If $\eta = \frac{\delta}{2}$, then \[ P(\eta) = 1 - \eta^k + \eps(\eta) \] with $|\eps(\eta)| < \frac{\eta^k}{2}$. So $P(\eta) < 1 = P(0)$, contradiction. So $P(0) = 0$, and $P$ has a root as desired. \end{proof} \begin{corollary*} If $P$ has degree $n \ge 1$ then $P(z) = (z - a)Q(z)$ for some polynomial $Q$ of degree $n - 1$. \end{corollary*} \begin{proof} By long division (in fact proof by induction). If $P$ degree $n$, then $P(z) = (z - a) Q(z) + r$ with $\deg Q = n - 1$, $r \in \CC$. If $P(a) = 0$ then $0 = 0 + r$ so $r = 0$, so $P(z) = (z - a)Q(z)$. \end{proof} By induction if $P$ has degree $n$, \[ P(z) = A \prod_{j = 1}^n (z - a_j) \] for some $A \neq 0$. \begin{corollary*} If $P$ is a polynomial of degree at most $n$ which vanishes at $n + 1$ points then $P = 0$. \end{corollary*} \begin{proof} If $\deg P = k \ge 0$, then $P(z) = A \prod_{j = 1}^k (z - a_j)$. Then $P(z) \neq 0$ for $z \neq a_1, a_2, \ldots, a_k$. \end{proof}