%! TEX root = TA.tex % vim: tw=50 % 27/02/2024 12PM Another way to think of this: let $(X, d)$ be complete. If $P_j$ is a property of a point and: \begin{enumerate}[(1)] \item $P_j$ is stable, i.e. given $x$ with property $P_j$, there exists $\delta > 0$ such that $y \in B(x, \delta) \implies y$ has property $P_j$. \item Not $P_j$ is unstable, i.e. given $x \in X$ and $\delta > 0$, there exists $y \in B(x, \delta)$ such that $y$ has propery $P_j$. \end{enumerate} Then there exists $x^*$ with property $P_j$ for all $j$ (set $F_j$ to be the points not satisfying $P_j$). \begin{flashcard}[proof-of-baire-category] \prompt{Proof of \nameref{baire_category}?} \begin{proof}[Proof of \nameref{baire_category}] \cloze{Choose $x_0 \in X$ and take $\delta_0 = 1$. We define $x_j, \delta_j$ revursively (i.e. by induction). If $x_j \in X$ and $\delta_j > 0$ constructed, then we know that there exists $x_{j + 1} \notin F_{j + 1}$ such that $d(x_{j + 1}, x_j) < \frac{\delta_j}{4}$ (by the first hypothesis) and $0 < \delta_{j + 1} < \frac{\delta_j}{4}$ such that $y \in B(x_{j + 1}, \delta_{j + 1}) \implies y \notin F_{j + 1}$ (by the second hypothesis). Now $\delta_{j + k} \le 4^{-k} \delta_j$ so \[ \sum_{k = 0}^\infty d(x_{j + k}, x_{j + k + 1}) \le \sum_{r = j + 1}^\infty 4^{-r} \delta_j \le \frac{\delta_j}{2} \] so $(x_j)$ is Cauchy and $x_j \to x$ with $d(x_j, x) < \frac{\delta_j}{2}$. Then $x \notin F_j$ for every $j$.} \end{proof} \end{flashcard} The result comes with some unsatisfactory but traditional nomenclature. \begin{flashcard}[first-category-defn] \begin{definition*}[First category] \cloze{$E$ is of first category if $E \subseteq \bigcup_{j = 1}^\infty F_j$ with $F_j$ closed and ``nowhere dense'', i.e. with empty interior.} \end{definition*} \end{flashcard} \vspace{-1em} Following immediate consequences are much used: \begin{enumerate}[(1)] \item If $(X, d)$ is complete and $E$ is first category then $E \neq X$. \item $(X, d)$ complete. The countable union of sets of first category is of first category. \begin{proof} If $\mathcal{F}_j$ is a countable collection of nowhere dense closed sets then $\bigcup_{j = 1}^\infty \mathcal{F}_j$ is the countable union of nowhere dense closed sets. \end{proof} \end{enumerate} \begin{flashcard}[isolated-point-defn] \begin{definition*}[Isolated point] \cloze{Let $(X, d)$ be a metric space. A point $x$ is \emph{isolated} if there exists a $\delta > 0$ such that $B(x, \delta) = \{x\}$.} \end{definition*} \end{flashcard} \begin{flashcard}[complete-no-isolated-is-countable] \begin{theorem*} A complete metric space without \cloze{isolated points is uncountable.} \end{theorem*} \begin{proof} \cloze{Suppose $(X, d)$ is complete and countable. Let $X = \{x_1, x_2, \ldots\}$ and no $x_j$ isolated. Then $\{x_j\}$ is closed and $\{x_j\}$ is not open since $B(x_j, \delta) \neq \{x_j\}$. So $\Int\{x_j\} = \emptyset$. So $X \neq \bigcup \{x_j\}$, a contradiction.} \end{proof} \end{flashcard} \begin{corollary*} $\RR$ is uncountable. \end{corollary*} \vspace{-1em} Banach's proof that nowhere differentiable functions exist: Work on $C([0, 1])$ with uniform norm. \begin{flashcard}[anywhere-diff-first-category-thm] \begin{theorem*}[Baire] The set of anywhere differentiable continuous functions \cloze{is of first category.} \end{theorem*} \begin{proof} \cloze{Banach shows that \[ E_n = \{f \in C([0, 1]) : \exists x \in [0, 1], |f(x) - f(y)| \le n|x - y| ~\forall y \in [0, 1]\} \] is closed and nowhere dense. If we can prove this then $\bigcup E_j$ is first category. Claim is that if $f \notin \bigcup_j E_j$ then $f$ is nowhere differentiable. Subproof: Suppose $f$ is differentiable at $x$. Then there exists $\delta > 0$ such that \[ \left| \frac{f(x) - f(y)}{x - y} - f'(x) \right| \le 1 \qquad \forall |y| \le \delta \] so $|f(x) - f(y)| \le (|f'(x)| + 1)|x - y|$. If $|y| \ge \delta$, then \[ \left| \frac{f(x) - f(y)}{x - y} \right| \le \frac{2\|f\|_\infty}{\delta} \] so \[ |f(x) - f(y)| \le \frac{2\|f\|_\infty}{\delta} |x - y| .\] Thus $f \in E_n$ for some $n$. Thus all we have to do is to show that $E_n$ is closed and nowhere dense (since $C([0, 1])$ is complete). Closed: Suppose $f_m \in E_n$, $f_m \to f$ uniformly. Since $f_m \in E_n$, there exists $x_m$ such that $|f_m(x_m) - f(y)| \le n|x_m - y|$ for all $y \in [0, 1]$. So there exists $x^*$ and $m(j) \to \infty$ such that $x_{m(j)} \to x^*$. By extracting to a subsequence we may assume $x_m \to x^*$. Then: \begin{align*} |f(x^*) - f(y)| &\le |f(x^*) - f(x_m)| + |f(x_m) - f_m(x_m)| + |f_m(x_m) - f_m(y)| + |f_m(y) - f(y)| \\ &\le |f(x^*) - f(x_m)| + \|f - f\|_\infty + n|x - y| + \|f_m - f\|_\infty \\ &\to 0 + 0 + n|x^* - y| + 0 \end{align*} so $|f(x^*) - f(y)| \le n|x^* - y|$. Now we show that $E_n$ is nowhere dense. So we must show if $f \in C([0, 1])$ and $\delta > 0$ then there exists $g$ such that $\|f - g\|_\infty < \delta$ and $g \notin E_n$. Words of wisdom: trying to construct a ``nasty function'' from $g$ is hard -- if $g$ happened to already be nasty in a weird way, then we might accidentally make a ``nice'' function out of it. So the first step is we find a nearby ``nice'' function, and uses this to construct a ``nasty'' one. Let $f \in C([0, 1])$. By Weierstrass approximation theorem, there exists a polynomial $P$ such that $\|f - P\|_\infty < \frac{\delta}{4}$. Now look at $g(x) = f(x) + \frac{\delta}{4} \sin Nx$ with $N$ to be chosen later. Observe that $\|g - f\|_\infty < \delta$ and we must show that for large $N$, $g - f \notin E_n$. Also observe that $P$ is continuously differentiable, so $|P'(t)| \le M$ for some $M$. Suppose $x \in [0, 1]$. Without loss of generality $x \in [0, 1)$ (just reflect). Consider $N$ large, and \[ \left( r\pi + \frac{\pi}{2} \right) \frac{1}{N}, \left( r\pi + \frac{3\pi}{2} \right) \frac{1}{N} \] with $x \le \left( r\pi + \frac{\pi}{2} \right) \frac{1}{N}$ and $\left(\frac{r\pi}{2} + \frac{\pi}{2} \right) \frac{1}{N} < x + \frac{2\pi}{N}$. Then we have that: \[ |g(x) - g(y)| \ge |\sin Nx - \sin Ny| - |P(x) - P(y)| \ge |\sin N x - \sin N y| - M|x - y| .\] So choosing $y = \left( r\pi + \frac{\pi}{2} \right) \frac{1}{N}$ or $y = \left( r\pi + \frac{3\pi}{2} \right) \frac{1}{N}$ and $N$ large enough, we get \[ |g(x) - g(y)| > (n + M)|x - y| - M|x - y| \ge n|x - y| . \qedhere \]} \end{proof} \end{flashcard}