%! TEX root = TA.tex % vim: tw=50 % 22/02/2024 12PM Thus we have proved Runge's theorem. \subsubsection*{Consequences} We prove lots of examples like the following: There exists polynomials $P_n$ such that $P_n(z) \to 1$ for $\Im z \ge 0$, but $P_n(z) \to 0$ for $\Im z < 0$. (Contrast: uniform limit of analytic functions is analytic). Define: \begin{align*} K_n &= \left\{ z - \frac{i}{n} : |z| \le n, \Im z \ge 0 \right\} \\ K_n' &= \left\{ z - \frac{4i}{n} : |z| \le n, \Im z \le 0 \right\} \\ \Omega_n &= \left\{ z - \frac{2i}{n} : |z| < n + 1, \Im z > 0\right\} \\ \Omega_n' &= \left\{ z - \frac{3i}{n} : |z| < n + 1, \Im z < 0\right\} \end{align*} Observe that: \begin{itemize} \item $K_n \cup K_n'$ is compact. \item $\Omega_n, \Omega_n'$ are open, and disjoint (and hence their union is open). \item $\Omega_n \cup \Omega_n' \supseteq K_n \cup K_n'$. \end{itemize} Furthermore $(K_n \cup K_n')^c$ is path-connected. Define \[ f_n(z) = \begin{cases} 1 & z \in \Omega_n \\ 0 & z \in \Omega_n' \end{cases} \] $f_n$ is analytic on $\Omega_n \cup \Omega_n'$ (since locally constant). So we can find a polynomial $P_n$ with \[ |P_n(z) - f_n(z)| \le 2^{-n} \] for all $z \in K_n \cup K_n'$. If $z^*$ is fixed and $\Im z^* \ge 0$ then $z^* \in \Omega_n$ for $n$ sufficiently large, so since $f_n(z^*) =1$, $P_n(z^*) \to 1$ as $n \to \infty$. If $z^*$ is fixed and $\Im z^* < 0$ then $z^* \in \Omega_n'$ for $n$ sufficiently large $n$, so since $f_n(z^*) = 0$ for $n$ sufficiently large, $P_n(z^*) \to 0$ as $n \to \infty$. \newpage \section{Irrational and Transcendental Numbers} Proof that \[ e = \sum_{n = 0}^\infty \frac{1}{n!} \] is irrational. \begin{remark*} We shall use the fact that $1$ is the smallest strictly positive integer. \end{remark*} \vspace{-1em} Suppose that $e$ is rational. Then (since $e > 0$), $e = \frac{p}{q}$ for some $p, q$ coprime, with $p, q \ge 1$. Calculate: \begin{align*} e &= \sum_{r = 0}^\infty \frac{1}{r!} \\ \left( e - \sum_{r = 0}^q \frac{1}{r!} \right) &= \sum_{r = q + 1}^\infty \frac{1}{r!} \\ q! \left( e - \sum_{r = 0}^q \frac{1}{r!} \right) &= q! \sum_{r = p + 1}^\infty \frac{1}{r!} \\ q! \left( e - \sum_{n = 0}^q \frac{1}{r!} \right) &= q!e - \sum_{r = 0}^q \frac{q!}{r!} \in \NN \end{align*} but also \[ q! \left( e - \sum_{r = 0}^q \frac{1}{r!} \right) > 0 .\] But \[ \sum_{r = q + 1}^\infty < \sum_{s = 1}^\infty \frac{1}{(p + 1)^r} = \frac{1}{p + 1} \frac{1}{1 - \frac{p}{p + 1}} = 1 .\] So we have found an integer between $0$ and $1$, which is nonsense! A similar idea gives us $\pi$ is irrational. \begin{flashcard}[pi-irrational] \prompt{Prove that $\pi$ is irrational.} \begin{proof} \cloze{Consider $S_n = \int_0^\pi x_n(\pi - x)^n \sin x \dd x$. We will show that $S_n$ is a polynomial in $\pi$ with coefficient of the form $A_n n!$ with $A_n \in \ZZ$. First step is to ``evaluate'' the integral and we shall use the fact that if $f_n(x) = x^n (\pi - x)^n$ then: \begin{itemize} \item $f_n^{(r)}(0) = 0$ if $0 \le r \le n - 1$ \item $f_n^{(r)}(0) = B_n n! \pi^{2\pi - r}$ with $B_n$ ($n \le r \le 2n$. \item $f_n^{(r)}(0)= 0$ if $r > 2n$. \end{itemize} \[ f_n(x) = \sum_k {n \choose k} x^{n + k} \pi^{n - k} (-1)^{n - k} .\] $f_n^{(r)}(0) = 0$ unless $n \le r \le 2n$. \begin{align*} f_n^{(k)}(0) &= {n \choose k} (n + k)! \pi^{n - k} (-1)^{n - k} \\ &= B_k n! \pi^{n - k} \end{align*} By symmetry about $\frac{\pi}{2}$, we get similar results for derivatives of $f$ when evaluated at $\pi$. Now calculate: \begin{align*} \int_0^\pi f_n^{(r)}(x) \sin x \dd x &= [f_n^{(r + 1)} (x) \sin x]_0^\pi + \int_0^\pi f_n^{(r + 1)} (x) \cos x \dd x \\ &= \int_0^\pi f_n^{(r + 1)} (x) \cos x \dd x \\ \int_0^\pi f_n^{(r)} (x) \cos x \dd x &= [f_n^{(r + 1)}(x) \cos x]_0^\pi - \int_0^\pi f_n^{(r + 1)} (x) \sin x \dd x \\ &= -f_n^{(r + 1)}(\pi) - f_n^{(r + 1)}(0) - \int_0^\pi f_n^{(r + 1)}(x) \cos (x) \dd x \end{align*} so by repeated integration by parts \[ \int_0^\pi x^n(\pi - x)^n \dd x = \sum_{r = 0}^n C_r \pi^r n! \] with $C_r \in \ZZ$. \[ \frac{1}{n!} \int_0^\pi x^n (\pi - x)^n \dd x = \sum_{r = 0}^n C_r \pi^r .\] Now \[ x^n(\pi - x)^n \le \left( \frac{\pi}{2} \right)^{-n} \] (since $x(\pi - x) \le \frac{\pi^2}{4}$ by AM-GM), so if $\pi = \frac{p}{q}$ with $p, q > 0$, $p, q \in \ZZ$ then we have $q^n \sum_r C_r \pi^r \in \ZZ$ and \[ q^n \sum_r C_r \pi^r \le \frac{q^n}{n!} \int_0^\pi x^n (\pi - x)^n \dd x \le \frac{q^n}{n!} \pi \left( \frac{\pi}{2} \right)^{-n} = u_n \] Then $\frac{u_{n + 1}}{u_n} = \frac{\pi^2 q}{(n + 1)} \to 0$ as $n \to \infty$, so if $n$ is large then $u_n < 1$ so \[ 0 < q^n \sum_r C_r \pi^r < 1 \] which contradicts the fact that it is an integer.} \end{proof} \end{flashcard}