%! TEX root = TA.tex % vim: tw=50 % 20/02/2024 12PM Our last remark before looking at Runge's theorem: Taylor's theorem is not very helpful in this case. Consider $\sqrt{z}$ with branch cut negative real axis. Take the region as sketched: \begin{center} \includegraphics[width=0.6\linewidth]{images/0294114020c54adb.png} \end{center} Taylor's theorem works up to the first singularity that you find. \begin{definition*} $E \subseteq \CC$ is path-connected if given $z, w \in E$, there exists $\gamma : [0, 1] \to E$ continuous such that $\gamma(0) = z$, $\gamma(1) = w$. \end{definition*} \begin{flashcard}[runges-thm] \begin{theorem*}[Runge's Theorem] \cloze{If $\Omega$ is open in $\CC$, $f : \Omega \to \CC$ is analytic, $K$ is a compact subset of $\Omega$ with $K^c$ path-connected, then we can find a sequence $P_n$ of polynomials such that $P_n \to f$ uniformly on $K$.} \end{theorem*} \end{flashcard} \vspace{-1em} (These hypotheses stay with us for the rest of lecture 7). \begin{flashcard}[runge-step-1] \begin{lemma*} \prompt{(Step 1 of proof of Runge).} Let $K$, $\Omega$, $f$ as stated. We can find closed straight line segments with $l_j \subseteq \Omega \setminus K$ such that \[ f(z) = \sum_i \frac{1}{2\pi i} \int_{l_j} \frac{f(w)}{w - z} \dd w \] \end{lemma*} \fcscrap{In other words, we can approximate the borders by straight lines like this: \begin{center} \includegraphics[width=0.6\linewidth]{images/4b54a2799bbe4be4.png} \end{center}} \begin{proof} \cloze{Since $K$ is compact, $\Omega^c$ is closed and $K \cap \Omega^c = \emptyset$, there exists a $\delta > 0$ such that $|z - w| > \delta$ for all $z \in K$ and $w \in \Omega^c$ (proof is that $z \mapsto d(z, \Omega^c)$ is continuous $K \to \RR$ and $K$ is compact). Choose $N \gg \delta^{-1}$ (for example $N = 100\delta^{-1} + 100$), and consider the collection of squares with vertices \[ \frac{r + si}{N}, \frac{(r + 1) + si}{N}, \frac{(r + 1) + (s + 1)i}{N}, \frac{r + (s + 1)i}{N} \] such that \[ d \left( \frac{r + si}{N} \right) < \frac{\delta}{2} .\] If $z \in K$ and $z$ does not lie on the boundary of a small square then \[ \frac{1}{2\pi i} \int \frac{f(w)}{w - z} \dd w = \begin{cases} f(z) & \text{if $z$ lies in the small square} \\ 0 & \text{otherwise} \end{cases} \] Summing over the set of squares (which we shall call $S$), we get \[ \sum_S \frac{1}{2\pi i} \int \frac{f(w)}{w - z} \dd w = f(z) \] and since interior sides cancel: \[ \sum_{l \in L} \frac{1}{2\pi i} \int_l \frac{f(w)}{w - z} \dd w = f(z) \] where $L$ is the set of edges that are not cancelled. Note that the $l$ in the sum lie in $\Omega \setminus K$. To extend this formula to all $z \in K$ just observe that \[ z \mapsto \frac{1}{2\pi i} \int_l \frac{f(w)}{w - z} \dd w \] is continuous on $\CC \setminus l$.} \end{proof} \end{flashcard} Thus Runge's theorem will follow if we can show that following: If $\Omega$ open, $K$ compact subset of $\Omega$, $l \subseteq \Omega \setminus K$ a closed line segment, and $f : \Omega \to \CC$ analytic, then we can find a sequence of polynomials $P_n$ such that $P_n(z) \to \frac{1}{2\pi i} \int_l \frac{f(w)}{w - z} \dd w$ uniformly on $K$. \begin{flashcard}[runge-step-2] \begin{lemma*} \prompt{(Step 2 of proof of Runge).} If $f$ continuous on $K$, $l$ as before then given $\eps > $ we can find $N$ and $w_1, w_2, \ldots, w_N \in l$ such that \[ \left| \int_l \frac{f(w)}{w - z} \dd w - \sum_j \frac{A_j}{w_j - z} \right| < \eps \qquad \forall z \in K .\] \end{lemma*} \begin{proof} \cloze{$l$ is compact, $K$ is compact so $l \times K$ is compact. $G : l \times K \to \CC$, $G(z, w) = \frac{f(w)}{w - z}$. Note $G$ is continuous, so $G$ is uniformly continuous, so if $l$ is given by $\gamma : [0, 1] \to \CC$, $\gamma(t) = \alpha + \beta t$ then \[ \frac{f(z)}{z - w} - \sum G \left( z, \gamma \left( \frac{r}{n} \right) \right) \mathbbm{1}_{\{w = \gamma(t), r / n \le t \le r + 1 / n\}}(w) \to 0 \] uniformly. } \end{proof} \end{flashcard} Thus Runge's theorem follows if I can show that if $w \notin K$ then there exists a sequence $P_n$ of polynoials such that $P_n(z) \to \frac{1}{w - z}$ uniformly on $K$. \begin{flashcard}[runge-step-3] \begin{theorem*} If $K$ is compact and $K^c$ is path-connected, $w \notin K$, then there exists polynomials $P_n$ such that $P_n(z) \to \frac{1}{w - z}$ uniformly for $z \in K$. \end{theorem*} \begin{proof} \cloze{To prove this call $\Gamma$ the set of $w \notin K$ such that the result is true. Observe first that if $\ol{B(0, R)} \supseteq K$ then \[ \Gamma \supseteq \{w \in \CC : |w| \ge 2R\} .\] Proof: \[ \frac{1}{w - z} = \frac{1}{w \left( 1 - \frac{z}{w} \right)} = \frac{1}{w} \sum_{r = 1}^\infty \left( \frac{z}{w} \right)^r \] and since $\left| \frac{z}{w} \right| \le \half$ the Weierstrass $M$-test tells us convergence is uniform. So \[ \frac{1}{w} \sum_{r = 0}^N \left( \frac{z}{w} \right)^r \to \frac{1}{w - z} \] uniformly. Next we observe that if $w \in \Gamma$ and $d(w', K) \ge 2\eta$ ($\eta > 0$) then if $w \in B(w', \eta)$ then we have $w \in \Gamma$. Proof: \[ \frac{1}{w - z} = \frac{1}{(w' - z) - (w' - w)} = \frac{1}{(w' - z)} \frac{1}{\left( 1 - \frac{w' - w}{w' - z} \right)} = \frac{1}{w' - z} \sum_n \frac{(w' - w)^n}{w' - z}\] convergence is uniform as $\frac{|w' - w|}{|w - z|} < \half$. Thus given $\eps > 0$ we can find an $N$ such that \[ \left| \frac{1}{w - z} - \sum_{n = 0}^N \frac{(w' - w)^n}{(w - z)^{n + 1}} \right| < \frac{\eps}{2} \] for $z \in K$. But we can find polynomials $P_m(z) \to \frac{1}{w' - z}$ uniformly on $K$. So for large enough $m$, \[ \left| \frac{1}{w - z} - \sum_{n = 0}^N (w' - w)^n P_m(z)^n \right| < \eps \qquad \forall z \in K .\] So we have now shown: \begin{enumerate}[(i)] \item There exists $R$ such that $|w| \ge R$ implies $w \in \Gamma$. \item If $\delta > 0$ and $w' \in \Gamma$, $\ol{B(w', 2\delta)} \cap K = \emptyset$, then $B(w', \delta) \subseteq \Gamma$. \end{enumerate} Suppose $w_1 \notin K$. Choose $|w_0| \ge R$. Then there exists $\gamma : [0, 1] \to K^c$ such that $\gamma$ is continuous and $\gamma(0) = w_1$, $\gamma(1) = w_0$. $\gamma([0, 1])$ is compact, $\gamma([0, 1]) \cap K = \emptyset$, so there exists $\delta > 0$ such that if $t \in [0, 1]$, \[ |\gamma(t) - k| \ge 8\delta \qquad \forall k \in K .\] $\gamma$ is continuous, hence uniformly continuous so we can find $N$ such that \[ \left| \gamma \left( \frac{r}{N} \right) - \gamma \left( \frac{r + 1}{N} \right) \right| < \delta .\] $\gamma(0) \in \Gamma$, so $\gamma \left( \frac{1}{N} \right) \in \Gamma$, so $\gamma \left( \frac{2}{N} \right) \in \Gamma$ etc, and we deduce $w_0 = \gamma(1) \in \Gamma$.} \end{proof} \end{flashcard}