%! TEX root = TA.tex % vim: tw=50 % 17/02/2024 12PM Last time we tried to introduce a metric on non-empty compact sets in $\RR^n$. We tried \[ \inf_{e \in E} d(e, F) \] and failed. We now try \[ \sigma(E, F) = \sup_{e \in E} d(e, F) .\] Note $\sigma(E, F) \ge 0$. Now we check: \begin{align*} \sigma(E, F) = 0 &\implies \sup_{e \in F} d(e, F) = 0 \\ &\implies d(e, F) = 0 \qquad \forall e \in E \\ &\implies e \in F \qquad \forall e \in E \\ &\implies F \supseteq E \end{align*} so $\sigma(E, F) \iff E \subseteq F$ (the backwards direction is easy). Immediately we see that \[ \sigma(E, F) \stackrel{?}{=} \sigma(F, E) \] may fail: \[ E = \{1\}, F = \{1, 2\} \] then $\sigma(E, F) \neq \sigma(F, E)$. However, the triangle inequality \[ \sigma(E, G) \le \sigma(E, F) + \sigma(F, G) \] works. \begin{proof} Let $e \in E$, $g g \in G$. Choose $f_e \in F$ such that $d(e, f_e) = d(e, F)$. Then \begin{align*} d(e, g) &= d(e, f_e) + d(f_e, g) \\ &= d(e, F) + d(f_e, g) \end{align*} Now take a supremum over $g \in G$, and we get \begin{align*} d(e, G) &\le d(e, F) + d(f_e, G) \\ &\le \sigma(E, F) + \sigma(F, G) \end{align*} so taking sup over $e \in E$ we get \[ \sigma(E, G) \le \sigma(E, F) + \sigma(F, G) . \qedhere \] \end{proof} Now we set \[ \rho(E, F) = \sigma(E, F) + \sigma(F, E) \] Now: \begin{itemize} \item $\rho(E, F) \ge 0$ \item $\rho(E, F) = \rho(F, E)$ \item $\rho(E, F) = 0$ if and only if $\sigma(E, F) = 0$, $\sigma(F, E) = 0$, which happens if and only if $E \subseteq F$, $F \subseteq E$, which happens if and only if $F = E$. \item Finally, \[ \rho(E, F) + \rho(E, G) = \sigma(E, F) + \sigma(F, E) + \sigma(F, G) + \sigma(G, F) \ge \sigma(E, G) + \sigma(G, E) = \rho(E, G) \] \end{itemize} We call this metric the \emph{Hausdorff metric}. \begin{hiddenflashcard}[hausdorff-metric] \begin{definition*}[Hausdorff metric] \cloze{ \[ \rho(E, F) = \sup_{e \in E} d(e, F) + \sup_{f \in F} d(f, E) .\] } \end{definition*} \end{hiddenflashcard} We can write it as: \[ d(E, F) = \sup_{f \in F} \inf_{e \in E} \|e - f\| + \sup_{e \in E} \inf_{f \in F} \|f - e\| .\] Moreover, the Hausdorff metric is complete. The proof depends on the following lemma: \begin{lemma*} If $K_1 \supseteq K_2 \supseteq \cdots$, with $K_j$ compact and non-empty, then $K = \bigcap_j K_j$ is non-empty (and compact). Furthermore, $\rho(K_j, K) \to 0$. \end{lemma*} \begin{proof} Non-empty: Choose $k_j \in K$. Since $k_j \in K_1$, $K_1$ compact, there exists $n(j)$ strictly increasing, and some $k \in K_1$ with $k_{n(j)} \to k$. But $k_{n(j)} \in K_m$ for all $m \le n(j)$, so $k \in K_m$ for all $m \le n(j)$, so $k \in \bigcap_m K_m = K$. So $K \neq \emptyset$. Hausdorff metric convergence: If not then there exists a $\delta > 0$ such that $\rho(K_{n(j)}, K) > \delta$ for some $n(j) \to \infty$. But $K_1 \supseteq K_2$, so $\rho(K_n, K) \ge \delta$ for all $n$. Now choose $k_j \in K_j$ such that $d(k_j, K) \ge \delta / 2$. By the previous argument, there exists $m(j) \to \infty$ such that $k_{m(j)} \to k \in K$, which gives a contradiction. \end{proof} Second lemma: \begin{lemma*} If $A, B$ are compact in $\RR^n$, then so is \[ A + B = \{a + b : a \in A, b \in B\} .\] \end{lemma*} \begin{proof} Suppose $c_n = a_n + b_n$ with $a_n \in A$, $b_n \in B$. Then there exists $n(j) \in \infty$, $a \in A$ with $a_{n(j)} \to a \in A$ and there exists $m(k) \to \infty$, $b \in B$ such that $b_{n(m(j))} \to b$. Then $c_{n(m(j))} \to a + b$. \end{proof} \begin{flashcard}[hausdorff-metric-is-complete] \begin{proof}[Proof that Hausdorff metric is complete] \cloze{It is sufficient to show that ``every sufficiently fast Cauchy sequence converges''. Thus it suffices to show that if $E_n$ are compact non-empty, with \[ \rho(E_n, E_{n + 1}) \le 8^{-n} \] then $E_n \stackrel{\rho}{\to} E$ for some compact non-empty set $E$. Let $K_n = E_n + \ol{B(0, 2^{-n})}$. Then $K_n$ is compact (by the previous lemma), and $K_{n + 1} \subseteq K_n$. This is because if $x \in K_{n + 1}$, then $\exists y \in K_n$ such that \[ d(x, y) \le 8^{-n} ,\] and then $B(x, 2^{-n - 1}) \subseteq B(y, 2^{-n})$. We have $K_1 \supseteq K_n \supseteq \cdots$, so there exists $K$ compact non-empty such that $K_n \stackrel{\rho}{\to} K$ (we use $K = \bigcap_n K_n$ using the previous lemma). But $\rho(K_n, E_n) \to 0$. So $\rho(E_n, K) \to 0$.} \end{proof} \end{flashcard} \newpage \section{Runge's Theorem} We start with Weierstrass Theorem: real polynomials are uniformly dense in $C(I)$ for all intervals $I$. Can we approximate continuous functions $f : K \to \CC$ ($K$ compact in $\CC$) by polynomials (uniformly)? The answer is no: Take $K = \ol{D(0, 2)}$, $f(z) = \ol{z}$. Suppose $P$ is a polynomial. Then integrating around the unit disc we have: \[ \oint f(z) - P(z) \dd z = \oint \ol{z} \dd z = \int e^{-i\theta} e^{i\theta} i \dd \theta = 2\pi i .\] But then \[ 2\pi \le \oint |f(z) - P(z)| \dd z \le 2\pi \|f - P\_\infty, \] so $\|f - P\|_\infty \ge 1$. Recall (or take my word) that the uniform limit of analytic functions is analytic (see \courseref[CA]{Complex Analysis}). Now try: If $\Omega$ open, and $K$ compact, with $\Omega \supseteq K$, $f : \Omega \to \CC$ analytic, then there exists $P_k$ polynomials such that $P_n \to f$ uniformly on $K$. This is also false: Take \[ \Omega = D(0, 2) \setminus D(0, 1 / 2) \] with $f(z) = \frac{1}{z}$. Again, \[ \oint f(z) \dd z = 2\pi i \] so argument as before shows that we cannot approximate $f$ uniformly on $K = \{z : |z| = 1\}$ by polynomials.