%! TEX root = TA.tex % vim: tw=50 % 15/02/2024 12PM \begin{flashcard}[legendre-integral-formula] \begin{theorem*} Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the distinct roots of $p_n$ and $A_j$ the unique constants such that \[ \int_{-1}^1 P(t) \dd t = \sum_j A_j P(\alpha_j) \] for all $P \in \mathcal{P}_{n - 1}$. Then in fact \cloze{ \[ \int_{-1}^1 P(t) \dd t = \sum_{j = 1}^n A_j P(\alpha_j) \] for all $P \in \mathcal{P}_{2n - 1}$. } \end{theorem*} \begin{proof} \cloze{Suppose $P \in \mathcal{P}_{2n - 1}$. By long division, write $P = Q p_n + R$ with $Q \in \mathcal{P}_{n - 1}$ and $R \in \mathcal{P}_{n - 1}$. Then \begin{align*} \int_{-1}^1 P \dd t &= \int_{-1}^1 Q p_n + R \dd t \\ &= \int Q p_n \dd t + \int R \dd t \\ &= \int R \dd t &&\text{(since $p_n \perp Q$)} \\ &= \sum_j A_j R(\alpha_j) \\ &= \sum_j A_j(Q(\alpha_j) p(\alpha_j) + R(\alpha_j)) \\ &= \sum_j A_j P(\alpha_j) \qedhere \end{align*}} \end{proof} \end{flashcard} \begin{remark*} If $\beta_1, \ldots, \beta_n, B_1, \ldots, B_n$ are such that \[ \int_{-1}^1 P(t) \dd t = \sum_j B_j P(\beta_j) \] for all $P \in \mathcal{P}_{2n - 1}$, then taking $F(t) = \prod_j (t - \beta_j)$ we have \begin{align*} \int_{-1}^1 F(t) Q(t) \dd t &= \sum_j B_j F(\beta_j) Q(\beta_j) \\ &= \sum_j B_j 0 \\ &= 0 \end{align*} for all $Q \in \mathcal{P}_{n - 1}$, using the fact that $FQ \in \mathcal{P}_{2n - 1}$. So $F \perp Q$ for all $Q \in \mathcal{P}_{n - 1}$. So $F$ is a scalar multiple of $p_n$, so $\{\beta_1, \ldots, \beta_n\} = \{\alpha_1, \ldots, \alpha_n\}$. \end{remark*} \begin{flashcard}[main-point-legendre-approx] This is \emph{not} the main point. The key observation is that for $\alpha$ the zeroes of $p_n$ and $A_j$ as before, we have: \begin{enumerate}[(1)] \item \cloze{$A_j > 0$} \item \cloze{(less important) $\sum_j A_j = 2$.} \end{enumerate} \begin{proof} \phantom{} \cloze{\begin{enumerate}[(1)] \item Consider $Q_j(t) = \prod_{i \neq j} (t - \alpha_i)^2$. $Q_j$ is non-constant and positive, so $\int Q > 0$ and $Q \in \mathcal{P}_{2n - 2} \subseteq \mathcal{P}_{2n - 1}$. So \[ 0 < \int_{-1}^1 Q_j(t) \dd t = \sum_i A_iQ_i(\alpha_j) = A_j Q(\alpha_j) \] so $A_j > 0$. \item $2 = \int_{-1}^1 1 \dd t = \sum_{j = 1}^n A_j$. \qedhere \end{enumerate}} \end{proof} \end{flashcard} \begin{corollary*} If $f \in C[-1, 1]$ and $\|P - f\|_\infty \le \eps$, $P \in \mathcal{P}_{2n - 1}$. Then \[ \left| \int_{-1}^1 f(t) \dd t - \sum_j A_j f(\alpha_j) \right| \le 4\eps .\] \end{corollary*} \begin{proof} \begin{align*} \left| \int f - \sum_j A_j f(\alpha_j) \right| &= \left| \int f - \int P + \sum A_j P(\alpha_j) - \sum A_j f(\alpha_j) \right| \\ &\le \left| \int_{-1}^1 (f - P) \right| + \sum |A_j| |P(\alpha_j) - f(\alpha_j)| \\ &\le 2\|f - P\|_\infty + 2\|f - P\|_\infty \\ &= 4\|f - P\|_\infty \\ &\le 4\eps \qedhere \end{align*} \end{proof} \begin{corollary*} By Weierstrass's theorem, Gaussian interpolation of higher and higher degree converges to the correct answer. \end{corollary*} \newpage \section{Hausdorff Metric (and simpler things)} [ALL SETS IN THIS SECTION ARE NON-EMPTY UNLESS OTHERWISE STATED]. Recall in $\RR^n$, if $A$ is closed and non-empty, then \[ d(\bf{x}, A) = \inf_{\bf{a} \in A} \|\bf{x} - \bf{a}\| \] is well-defined and $\bf{x} \mapsto d(\bf{x}, A)$ is continuous. \begin{proof}[Proof of continuity] If $\bf{x}, \bf{y}$ given. For any $\eps > 0$, there exists $\bf{a} \in A$ such that $\|\bf{x} - \bf{a}\| \le \eps + d(\bf{x}, A)$. Then \[ \|\bf{y} - \bf{a}\| \le \|\bf{x} - \bf{y}\| + \|\bf{x} - \bf{a}\|\| \le \|\bf{x} - \bf{y}\| + \eps + d(x, A) .\] $\eps$ is arbitrary, so $\|\bf{y} - \bf{a}\| \le \|x - y\| + d(x, A)$. So \[ d(y, A) \le d(x, y) + d(x, A) .\] Similarly \[ d(x, A) \le d(x, y) + d(y, A) \] so \[ |d(x, A) - d(y, A)| \le d(x, y) . \qedhere \] \end{proof} Thus for example there exists $\bf{a}_x \in A$ such that $\|\bf{x} - \bf{a}_x\| = d(x, A)$. \begin{proof} Choose $R \gg 0$ such that $\ol{B(\bf{x}, R)} \cap A \neq \emptyset$. $A \cap \ol{B(x, R)}$ is compact, so $d(x, A)$ attains a minimum, and this must be a global minimum (if $R$ is sufficiently large). \end{proof} The closest point is not necessarily unique. For example, $A = \{a : \|a\| = 1\}$, $x = 0$. If $A$ is convex, then the nearest point is unique. Suppose $a, b \in A$, $d(x, a) = d(x, b) = d(x, A)$. Then $\frac{a + b}{2} \in A$ and \[ d(x, \frac{a + b}{2}) < d(x, a) \] unless $a = b$. \begin{center} \includegraphics[width=0.6\linewidth]{images/e393758171c54e28.png} \end{center} We now investigate if we can find a metric to compare compact non-empty subsets of $\RR^n$. Recall the required properties of a metric: \begin{itemize} \item $d(x, y) \ge 0$ \item $d(x, y) = 0 \iff x = 0$ \item $d(x, y) = d(y, x)$ \item $d(x, y) + d(y, z) \ge d(x, z)$. \end{itemize} First try \[ \tau(A, B) = \inf_{a \in A} d(\bf{a}, B) \] This satisfies $\tau(A, B) \ge 0$, but fails at the second hurdle: \begin{align*} \tau(A, B) = 0 &\iff \exists a \in A \cap B \\ &\iff A \cap B \neq \emptyset \end{align*} We will end up using \[ \sigma(A, B) = \sup_{a \in A} d(a, B) \]