%! TEX root = TA.tex % vim: tw=50 % 13/02/2024 12PM During the next section we shall switch between various norms on $\RR^n$: \[ \|\bf{a}\|_\infty = \max|a_j|, \qquad \|\bf{a}\|_2 = \sqrt{\sum_j |a_j|^2}, \qquad \|\bf{a}\| = \sum_j |a_j| .\] There is a general theorem that all norms on $\RR^n$ are ``equivalent'': \begin{align*} \|\bf{a}\|_\infty &\le \|\bf{a}\|_1 \le n\|\bf{a}\|_\infty \\ \|\bf{a}\|_\infty &\le \|\bf{a}\|_2 \le n\|a\|_\infty \end{align*} Last time we showed that there exists an $\eps(n) > 0$ such that if $\bf{a} \in \RR^{n + 1}$ and $\|\bf{a}\|_\infty \ge 1$ then \[ -\sup_{t \in [a, b]} \left|\sum_{j = 0}^n a_j t^j\right| \ge \eps(n) .\] Thus if we write $T\bf{a} = P$ with $P(t) = \sum_j a_j t^j$, we have $\|T\bf{a}\|_\infty \to \infty$ as $\|\bf{a}\|_2 \to \infty$. We now show: \begin{flashcard}[best-poly-approx-lemma] \begin{lemma*} If $f \in C[a, b]$, then there exists a $P \in \mathcal{P}_n$ such that \[ \|f - P\|_\infty \le \|f - Q\|_\infty \] for all $Q \in \mathcal{P}_n$, i.e. ther exists a \emph{best} polynomial approximation (for fixed degree). \end{lemma*} \begin{proof} \cloze{Without loss of generality $[a, b] = [0, 1]$. Consider the map $S : \RR^{n + 1} \to \RR$ given by \[ S(\bf{a})(t) = \left| \sum_{j = 0}^n a_j t^j - f(t)\right| .\] We claim that $S$ is continuous. \begin{align*} |S(\bf{a})(t) - S(\bf{b})(t)| &= \left| \left| \sum_{j = 0}^n a_j t^j - f(t) \right| - \left| \sum_{j = 0}^n b_j t^j - f(t) \right| \right| \\ &\le \left| \sum_j (a_j t^j - f(t)) - \sum_j (b_j t^j - f(t)) \right| \\ &= \left| \sum_j (a_j - b_j) t^j \right| \\ &\le \sum_j |a_j - b_j| \end{align*} so \[ \|S(\bf{a}) - S(\bf{b})\| \le \sum_j |a_j - b_j| .\] So $S$ is continuous as a map $(\RR^{n + 1}, \|\bullet\|_2) \to \RR$. Now $|S(\bf{a})| \to \infty$ as $\|\bf{a}\|_2 \to \infty$ by our previous result. So we can find an $R$ such that $|S(\bf{a})| \ge S(\bf{0})$ for all $\|\bf{a}\|_2 \ge R$. $S$ is continuous on the compact set $\ol{B(0, R)}$ (closed ball), so has a minimum at some $\bf{c} \in \ol{B(0, R)}$. $S(c) \le S(\bf{a}) ~\forall \|\bf{a}\|_2 \le R$, \[ S(\bf{c}) \le S(\bf{0}) \le S(\bf{a}) \qquad \forall \|\bf{a}\|_2 \ge R . \qedhere \]} \end{proof} \end{flashcard} \subsubsection*{* Non-examinable material} Look at the attained minimum $(S - f) t$. Suppose that it does not satisfy the equiripple criterion. Then we can perturb it a little to improve the approximation, which is a contradiction. This shows that the equiripple is in fact a \emph{necessary} condition (not just a sufficient condition). ** This is the end of the non-examinable comments. \newpage \section{Gaussian Quadrature} \textbf{Problem:} Given $f(x_1), \ldots, f(x_n)$, we would like to estimate \[ \int_0^b f(t) \dd t .\] First idea is to use interpolation. \begin{flashcard}[poly-integral-lemma] \begin{lemma*} If $x_1, \ldots, x_n \in [a, b]$ all distinct. Then there exists unique $A_1, \ldots, A_n$ such that \[ \int_A^b P(t) \dd t = \sum_j A_j P(x_j) \] for all $P \in \mathcal{P}_{n - 1}$. \end{lemma*} \fcscrap{ So we hope that \[ \int_a^b f(t) \dd t \stackrel{?}{\approx} \sum_j A_j f(x_j) \] } \begin{proof} \cloze{Recall the notation \[ e_j(x) = \prod_{i \neq j} \frac{(x - x_i)}{(x_j - x_i)} ,\] so that $e_i(x_j) = \delta_{ij}$. If $P \in \mathcal{P}_{n - 1}$, we know that \[ P(t) = \sum_j P(x_j) e_j(t) .\] So \[ \int_a^ P(t) \dd t \sum_j P(x_j) A_j \] with \[ A_j = \int_a^b e_j(t) = \dd t .\] Conversely, if $\int_a^b P(t) \dd t = \sum_j B_j P(x_j)$ for all $P \in \mathcal{P}_n$, then we have \[ \int_a^b e_i(t) \dd t = \sum_j B_j e_i(x_j) = B_i .\] So $B_i = A_i$.} \end{proof} \end{flashcard} Without loss of generality $[a, b] = [0, 1]$. If we choose $x_r = \frac{r}{n}$ and look at $x_0, \ldots, x_n$ and $n$ is small we get quite good results. But as $n$ increases, the associated $A_j$ rapidly take very large values (allowed by the $A_j$ taking positive and negative values). Gauss says look at Legendre polynomials. Recall Gramm-Schmidt: If $\bf{e}_1, \ldots, \bf{e}_k$ are orthonormal vectors in an inner product space and $\bf{u} \notin \Span\{\bf{e}_1, \ldots, \bf{e}_k\}$, we can find $\bf{e}_{k + 1}$ such that $\bf{e}_1, \ldots, \bf{e}_{k + 1}$ are orthonormal and $\bf{u} \in \Span\{\bf{e}_1, \ldots, \bf{e}_{k + 1}\}$. \begin{flashcard}[leg-poly-defn] \prompt{Legendre Polynomials? \\} Recall also that $C([0, 1])$ is an inner product space if we write \[ \langle f, g \rangle = \int_0^1 f(t) g(t) \dd t .\] Thus we can find $P_0, P_1, P_2, \ldots$ with $P_j \in \mathcal{P}_j$ and $P_0, P_1, \ldots$ orthonormal, and so we can find unique polynomials $p_0, p_1, \ldots$ such that $p_n$ has degree $n$ and positive leading coefficient, with $p_0, p_1, \ldots, p_n$ orthonormal. We call the $p_j$ the \emph{Legendre polynomials}. \end{flashcard} \begin{flashcard}[legendre-poly-roots-lemma] \begin{lemma*} The Legendre polynomial $p_n$ has all its roots simple, real and lying in $[0, 1]$. \end{lemma*} \begin{proof} \cloze{Let $\beta_1, \ldots, \beta_m$ be the roots of odd order lying in $[0, 1]$ (odd order means $p_n$ changes sign as $t$ passes through $\beta_j$). Then writing $Q(t) = \prod_j (t - \beta_j)$ we have $Q(t) p_n(t)$ is single signed and non-zero. So \[ \int_0^1 Q(t) p_n(t) \neq 0 \] so $\deg Q \ge n$, so $m \ge n$. But $p_n$ is of degree $n$, so all roots lie in $[0, 1]$ and are simple.} \end{proof} \end{flashcard}