%! TEX root = TA.tex % vim: tw=50 % 08/02/2024 12PM Last time we introduced Bernstein's version of the Weierstrass polynomial approximation theorem: \begin{theorem*} If $f : [0, 1] \to \RR$ is continuous then writing \[ P_n(p) = \sum_r {n \choose r} f \left( \frac{r}{n} \right) p^r (1 - p)^{n - r} \] then $P_n \to f$ uniformly. \end{theorem*} \vspace{-1em} We use a probabilistic interpretation and Chebyshev inequality: \begin{lemma*} If $X$ is a bounded random variable, then \[ \PP(|X - \EE X| \ge a) \le \frac{\Var(X)}{a^2} .\] \end{lemma*} \begin{proof} See \courseref[Probability]{prob} from IA. \end{proof} \begin{proof}[Proof of Bernstein's version of Weierstrass polynomial approximation theorem] Now consider $X_1, X_2, \ldots, X_n$ independent random variables with $\PP(X_j = 1) = p$, $\PP(X_j = 0) = 1 - p$. Then \[ \Var(X_j) = \EE((X - \EE X)^2) = \EE((X - p)^2) = (1 - p) p^2 + p(1 - p)^2 = p(1 - p) \le \quarter \] by AM-GM. Then \[ \Var \left( \frac{X_1 + \cdots + X_n}{n} \right) = \frac{1}{n^2} \sum_j \Var(X_j) \le \frac{1}{4n} .\] Now consider the function $f$. By compactness there exists an $M$ such that $|f(p)| \le M$ for all $p \in [0, 1]$. Also, $f$ is uniformly continuous -- that is to say given $\eps > 0$, there exists $\delta(\eps) > 0$ such that \[ |s - t| \le \delta \implies |f(s) - f(t)| < \eps \] We fix $\eps > 0$, $\delta(\eps) > 0$ through the proof. Then we say that we can make $\eps$ as small as we want. \begin{align*} |P_n(p) - f(p)| &= |\EE((\ol{X})) - f(p)| \\ &= |\EE(f(\ol{X}) - f(p))| \\ &= \sum_{k = 0}^n \PP \left( \ol{X} = \frac{r}{n} \right) \left| f \left( \frac{r}{n} \right) - f(p) \right| \\ &= \sum_{\left| \frac{r}{n} - p \right| \le \delta} + \sum_{\left| \frac{r}{n} - p \right| > \delta} \\ &\le \sum_{\left| \frac{r}{n} - p \right| \le \delta} \eps \PP\left(\left|\ol{X} - \frac{r}{n}\right| \le p\right) + \sum_{\left| \frac{r}{n} - p\right| > \delta} M \PP \left( \left| \ol{X} - \frac{r}{n} \right| = p\right) \\ &\le \eps + 2M \PP \left( \left| \ol{X} - \frac{r}{n} \right| \ge \delta \right) \\ &\le \eps + 2M \frac{\Var(\ol{X})}{n} \frac{1}{\delta^2} &&\text{(Chebyshev)} \\ &\le \eps + \frac{2M}{4} \frac{1}{n} \\ &< 2\eps \end{align*} if $n$ is large enough. \end{proof} \subsubsection*{Best uniform approximation} \begin{flashcard}[equiripple-thm] \begin{theorem*}[Chebyshev equiripple criterion] \cloze{If $f : [a, b] \to \RR$ is continuous and $P$ is a polynomial of degree at most $n$ such that there exists $M \ge 0$ and $a = a_0 < a_1 < \cdots < a_n < a_{n + 1} \le b$ and $P(a_j) - f(a_j) = (-1)^j M$ (or $P(a_j) - f(a_j) = (-1)^{j + 1} M$) and such that $\|P - f\|_\infty$. Then $\|P - f\|_\infty \le \|Q - f\|_\infty$ for all polynomials $Q$ of degree $n$ or less.} \end{theorem*} \fcscrap{ \begin{center} \includegraphics[width=0.6\linewidth]{images/b9ef499aec9e4c30.png} \end{center} } \begin{proof} \cloze{Without loss of generality $P(a_j) - f(a_j) = (-1)^j M$. If $Q \in \mathcal{P}_n$ and $\|P - f\|_\infty > \|Q - f\|_\infty$ then $P(a_{2j} - f) \ge Q(a_{2j}) - f$, so $P(a_{2j}) > Q(a_{2j})$. Similarly for $P(a_{2j + 1}) < Q(a_{2j + 1})$. So there exists $c_j$ with $a_0 < c_0 < a_1 < c_1 < a_2 < \cdots < c_n < a_{n + 1}$ with $(P - Q)(c_j) = 0$ (intermediate value theorem). So $P - Q$ has $n + 1$ zeroes, but $P - Q \in \mathcal{P}_n$, so $P - Q = 0$, contradiction.} \end{proof} \end{flashcard} Now $\|T_n\|_\infty \le 1$ and $T_n$ is alternately $\pm 1$ at $n + 1$ points. The coefficient of $t^n$ in $T_n$ is $2^{-n + 1}$ (for $n \ge 1$). So $2^{n - 1} T_n(t) = t^n - Q_{n - 1}(t)$ with $Q_{n - 1}$ then best uniform approximation to $t^n$. \begin{flashcard}[poly-minima-coeff-coro] \begin{corollary*} There exists an $\eps_n$ such that if $P(T) = \sum_{j = 0}^n a_j t^j$ and $\exists k$ such that $|a_k| \ge 1$, then $|P(t)| \ge \eps_n ~\forall t \in [-1, 1]$. \end{corollary*} \begin{proof} \cloze{Proof by induction. True for $n = 0, 1$ by inspection. Now suppose true for $n = N$. \[ P(t) = \sum_{j = 0}^{N + 1} a_j t^j = a_{N + 1} t^{N + 1} + Q_N(t) .\] Say $Q_N(t) = \sum_{j = 0}^N a_j t^j$. If $|a_{N + 1}| < \frac{\eps_N}{2}$, then \[ \|P\|_\infty \ge \|Q\|_\infty - \frac{\eps_N}{2} \ge \frac{\eps_N}{2} .\] If $|a_{N + 1}| > \frac{\eps_N}{2}$ and we know from Chebyshev that \[ |P(t)| \ge \frac{\eps_N}{2} \inf_{Q \in \mathcal{P}_n} |Q(t) - t^{N + 1}| = \eps_N' > 0 . \qedhere \]} \end{proof} \end{flashcard}