%! TEX root = TA.tex % vim: tw=50 % 18/01/2024 12AM % No lecture on Saturday 10th February. \section{Metric spaces} \subsection{Revision} \begin{definition*}[Metric space] A \emph{metric space} is a pair $(X, d)$, where $X$ is a set, and $d : X^2 \to \RR$ is a function satisfying: \begin{itemize} \item $d(x, y) \ge 0$ \item $d(x, y) = 0 \iff x = y$ \item $d(x, y) = d(y, x)$ \item $d(x, y) + d(y, z) \ge d(x, z)$ \end{itemize} \end{definition*} \begin{example*} \phantom{} \begin{enumerate}[(i)] \item $\RR^n$ with the metric \[ d(x, y) = \|\bf{x} - \bf{y}\| = \left( \sum_{j = 1}^n (x_j - y_j)^2 \right)^{\half} \] \item $\CC$ with the metric \[ d(z, w) = |z - w| \] \end{enumerate} \end{example*} \begin{notation*} We write $x_n \dto x$ if and only if $d(x_n, x) \to 0$ as $n \to \infty$. \end{notation*} \begin{notation*} Open ball $B(x, y) = \{y : d(x, y) < r\}$ (an open set). \end{notation*} \begin{definition*}[Closed and Open] A set $E \subseteq X$ is closed if for all convergent sequences $x_n \dto x$, with $x_n \in E$, we have $x \in E$. $U \subseteq X$ is open if whenever $x \in U$ there exists $\delta > 0$ such that $B(x, \delta) \subseteq U$. \end{definition*} \begin{proposition*} If $U$ is open then $U^c$ is closed. \end{proposition*} \begin{proof} Suppose $x \in U$, then there exists $\delta > 0$ such that $B(x, \delta) \subseteq U$, so $d(x_n, x) \ge \delta$ whenever $x_n \in U^c$ so $x_n \not\dto x$. \end{proof} \begin{proposition*} If $E$ is closed then $E^c$ is open. \end{proposition*} \begin{proof} Suppose $y \in E^c$. Then there does not exist $y_n \in E$ such that $y_n \dto y$, so there exists $\delta$ such that $B(y, \delta) \subseteq E^c$. \end{proof} \begin{definition*}[Cauchy sequence] Working in $(X, d)$, we say $(x_n)$ is \emph{Cauchy} if \[ \forall \eps > 0 ~\exists N ~\forall m, n \ge N ~~d(x_n, x_m) \] (sometimes just say $d(x_n, x_m) \to 0$ as $n, m \to \infty$). \end{definition*} \begin{proposition*} Any convergent sequence is Cauchy. \end{proposition*} \begin{proof} If $x_n \dto x$ then \[ \forall \eps > 0 ~\exists N ~\forall n \ge N ~~d(x_n, x) < \frac{\eps}{2} \] and so \[ \forall \eps > 0 ~\exists N ~\forall m, n \ge N ~~d(x_n, x_m) < \eps \qedhere \] \end{proof} If every Cauchy sequence converges we say $(X, d)$ is complete. The following remearks are useful. \begin{proposition*} If a subsequence of a Cauchy sequence converges, then the sequence converges. \end{proposition*} \begin{proof} Suppose $(x_n)$ is Cauchy, $x_{n(j)} \to x$, with $n(j) \to \infty$. Let $\eps > 0$ and choose $N$ such that $d(x_n, x_m) < \frac{\eps}{2}$ for all $n, m \ge N$. Choose $n(J) \ge N$ such that $d(x_{n(J)}, x) < \frac{\eps}{2}$. then if $yn \ge N$ \[ d(x_n, x) \le d(x_n, x_{n(J)}) + d(x_{n(J)}, x) < \frac{\eps}{2} + \frac{\eps}{2} \qedhere \] \end{proof} \begin{proposition*} To show $(X, d)$ complete, we need only show that for some $\eps(n) \to 0$, $d(y_n, y_{n + 1}) < \eps(n) \implies \text{$y_n$ converges}$. \end{proposition*} \begin{proof} If $(x_n)$ is Cauchy, we can find $n(j)$ such that $d(x_{n(j)}, x_{n(j + 1)}) < \eps_j$. \end{proof} \begin{remark*} If $(X, d)$ is a metric space and $Y \subseteq X$ then writing \[ d_Y(y_1, y_2) = d(y_1, y_2) ~\forall y_1, y_2 \in Y \] we have $(Y, d_y)$ a metric space. \end{remark*} \begin{lemma*} If $E$ is closed in $(X, d)$ and $(X, d)$ is complete then $(Y, d_Y)$ is complete. \end{lemma*} \begin{proof} If $(y_n)$ is Cauchy in $(Y, d_Y)$ then $(y_n)$ is Cauchy in $X$, so $y_n \dto x$. But $E$ is closed, so $x \in E$, so $x \in Y$, so $y_n \stackrel{d_Y}{\to} x$. \end{proof} \begin{proposition*} If $(Y, d_Y)$ is complete then $Y$ is closed in $X$. \end{proposition*} \begin{proof} If $y_n \dto x$, $y_n \in Y$ then $(y_n)$ is Cauchy for $d$ and so for $d_Y$, so $y_n \stackrel{d_Y}{\to} y$, $y \in Y$, so $y_n \dto y \in Y$ so by uniqueness of limits, $x = y \in Y$. \end{proof} From \courseref[IA Numbers and Sets]{NS}, we know that $\RR$ is complete. \begin{theorem*} $\RR^n$ (with usual Euclidean meteric) is complete. \end{theorem*} \begin{proof} $\|\bf{x}(m) - \bf{x}(n)\| \ge |x_j(m) - x_j(n)|$, so $(\bf{x}(n))$ Cauchy implies $x_j(n)$ Cauchy, so $x_j(n) \to x_j$ for some $x_j$, so \[ \sum_{j = 1}^n (x_{j(n)} - x_j)^2 \to 0 ,\] so $\bf{x}_j \to \bf{x}$. \end{proof} \begin{theorem*}[Bolzano Weierstrass (in $\RR$)] Let $[a, b]$ be a closed interval. If $x_n \in [a, b]$, then there exists a sequence $n(j) \to \infty$ and $x \in [a, b]$ such that $x_{n(j)} \to x$. \end{theorem*} \vspace{-1em} This theorem has an easy extension to $\RR^m$. \begin{theorem*}[Bolzano Weierstrass (in $\RR^m$)] \label{BW} If $\bf{x}(k) \in \prod_{j = 1}^m [a_j, b_j]$, then $\bf{x}(k)$ has a convergent subsequence. \end{theorem*} \begin{proof} Proof by induction. True for $m = 1$ (see \courseref[IA Numbers and Sets]{NS}). Suppose true for $m$. Then if $\bf{x}(k) \in \prod_{j = 1}^{m + 1} [a_j, b_j]$, we write \[ \bf{x}(k) = (\bf{y}(k), z_k) \] with $\bf{y}(k) \in \prod_{i = 1}^m [a_j, b_j]$, $z_k \in [a_{m + 1}, b_{m + 1}]$. By inductive hypothesis, there exists $k(r) \to \infty$ such that $\bf{y}(k(r)) \to \bf{y} \in \prod_{j = 1}^m [a_j, b_j]$. By Bolzano Weierstrass in $\RR$, there exists $r(s) \to \infty$ such that $z_{k(r(s))} \to z$. Then \[ \bf{x}(k(r(s))) \to (\bf{y}, z) . \qedhere \] \end{proof} \begin{theorem*}[Bolzano Weierstrass (for closed and bounded sets)] If $E \subseteq \RR^n$ is closed and bounded, then if $\bf{e}_n \in E$ is a sequence in $E$, then there exists a sequence $n(k) \to \infty$ such that $\bf{e}_{n(k)} \to \bf{e} \in E$. Only true if $E$ is closed and bounded. \end{theorem*} \begin{proof} Choose $R$ such that $[-R, R]^n \supseteq E$ (possible since $E$ is bounded). Then if $\bf{e}_r \in E$, $\bf{e}_r \in [-R, R]^n$ so there exists $r(j) \to \infty$ and $\bf{e}$ such that $\bf{e}_{r(j)} \to \bf{e}$. But $E$ is closed so $\bf{e} \in E$. \end{proof} This is false if $E$ is not closed. Pick $x, x_n$, $x_n \in E$ with $x_n \to x$, $x \notin E$. Then any subsequence of $x_n$ also converges to $x$. If $E$ is not bounded pick $|x_n| \ge n$ with $x_n \in E$. This sequence has no convergent subsequence.