%! TEX root = NF.tex % vim: tw=50 % 15/02/2024 10AM \begin{flashcard}[ramification-index-defn] \begin{definition*}[Ramification index] \glssymboldefn{ramind}{$e(Q \mid P)$}{$e(Q \mid P)$} \glsnoundefn{ramind}{ramification index}{ramification indices} \cloze{Given an extension of \glspl{nf} $L / K$, and primes $P \subset \O_K$, $Q \subset \O_L$ such that $P$ \gls{lo} $Q$, we define $e(Q \mid P)$ to be the largest $e \in \ZZ$ such that $Q^e \mid P\O_L$.} \end{definition*} \end{flashcard} \vspace{-1em} \textbf{Observe:} $\O_L \to \O_L / Q$ sends $\O_K$ to $\O_K / P$ because $Q \cap \O_K = P$, so $\O_L / Q \mid \O_K / P$. \begin{flashcard}[inertial-degree-defn] \begin{definition*}[Inertial degree] \glssymboldefn{inertdeg}{$f(Q \mid P)$}{$f(Q \mid P)$} \glsnoundefn{inertdeg}{inertial degree}{inertial degrees} \cloze{If $P$ \gls{lo} $Q$, we define the \emph{inertial degree} \[ f(Q \mid P) = [\O_L / Q : \O_K / P] .\]} \end{definition*} \end{flashcard} \vspace{-1em} Let $M / L$, let $R \subset \O_M$ be a prime that \gls{lo} $Q$. Then $R$ \gls{lo} $P$, and \begin{align*} \ramind(R \mid P) &= \ramind(R \mid Q) \ramind (Q \mid P) \\ \inertdeg(R \mid P) &= \inertdeg(R \mid Q) \inertdeg(Q \mid P) \end{align*} \begin{lemma*} For all ideals $I$, $\exists k \in \ZZ_{> 0}$ such that $I^k$ is a principal ideal. \end{lemma*} \begin{proof} Later. This Lemma is only stated now so that we can use it in the following proofs. \end{proof} \begin{flashcard}[ideal-lifting-norm-lemma] \begin{proposition*} Let $L / K$. Let $I \subset \O_K$. Then $\N(I\O_L) = \N(I)^{[L : K]}$. \end{proposition*} \begin{proof} \cloze{True for principal ideals. Indeed, if $I = \alpha\O_K$ for some $\alpha \in \O_K$, then \begin{align*} I\O_L &= \alpha \O_L \\ \N(\alpha\O_K) &= N_{K / \QQ}(\alpha) \\ \N(\alpha\O_L) &= N_{L / \QQ}(\alpha) = N_{K / \QQ}(\alpha)^{[L : K]} \end{align*} Now to prove for a general ideal $I$, pick $k > 0$ such that $I^k$ is principal. Then by the above, the equality holds for $I^k$. Hence it holds for $I$, by multiplicativity of $\N(I)$ (since $\N(I)$ is a positive integer).} \end{proof} \end{flashcard} \begin{flashcard}[primes-deg-sum-thm] \begin{theorem*} Let $Q_1, \ldots, Q_r$ be the primes in $\O_L$ that \gls{la} $P \subset \O_K$. Then: \[ [L : K] = \sum_{j = 1}^r \ramind(Q_j \mid P) \inertdeg(Q_j \mid P) .\] \end{theorem*} \begin{proof} \cloze{$P \O_L = Q_1^{\ramind(Q_1 \mid P)} \cdots Q_r^{\ramind(Q_r \mid P)}$ (by the definition of \gls{ramind}). Then \[ \N(P\O_L) = \N(Q_1)^{\ramind(Q_1 \mid P)} \cdots \N(Q_r)^{\ramind(Q_r \mid P)} = \N(P)^{\sum_{i = 1}^r \ramind(Q_i \mid P) \inertdeg(Q_j \mid P)} .\] By the above Proposition, \[ \N(P\O_L) = \N(P)^{[L : K]} .\] So the desired equality follows, since $\N(P) > 1$.} \end{proof} \end{flashcard} \begin{flashcard}[dedekind-thm-factorisation] \begin{theorem*}[Dedekind] \label{dedekind} \cloze{Let $K$ be a \gls{nf}. Let $P \subset \O_K$ a prime. Let $p$ be the rational prime below $P$. Let $g \in \O_K[X]$ be monic and irreducible. Let $\alpha$ be a root of $g$, and let $L = K(\alpha)$. Assume $p \nmid [\O_L : \O_K[\alpha]]$. Let $\ol{g}$ be the image of $g$ in $(\O_K / P)[X]$. Let \[ \ol{g} = \ol{g}_1^{e_1} \cdots \ol{g}_r^{e_r} \] be the factorisation of $\ol{g}$ into irreducibles in the $(\O_K / P)[X]$. Let $g_j \in \O_K[X]$ monic such that $g_j \equiv \ol{g}_j \pmod{P}$ for all $j$. Then $Q_j = P\O_L + g_j(\alpha)\O_L$ is a prime in $\O_L$ with $\inertdeg(Q_j \mid P) = \deg g_j$, and \[ P\O_L = Q_1^{e_1} \cdots Q_r^{e_r} .\]} \end{theorem*} \end{flashcard} \begin{flashcard}[monogenic-nf-defn] \begin{definition*}[Monogenic] \glsnoundefn{monogenic}{monogenic}{\gls{nf}} \cloze{A \gls{nf} $K$ is \emph{monogenic} if there is $\alpha$ such that $\O_K = \ZZ[\alpha]$.} \end{definition*} \end{flashcard} \begin{flashcard}[dedekind-pf-1] \begin{proposition*} \prompt{First step of \nameref{dedekind}:} \cloze{\[ Q_1^{e_1} \cdots Q_r^{e_r} \subset P\O_L \]} \end{proposition*} \begin{proof} \cloze{Pick $e_j$ elements (not necessarily distrinct) from each $P\O_L \cup \{g_j(\alpha)\}$, and multiply them together. Collect all such products in a set $A$. By definition, $Q_1^{e_1} \cdots Q_r^{e_r}$ is generated by $A$. So it is enough to show that $A \subset P\O_L$. All but one element in $A$ has a factor in $P\O_L$. The exception is $g_1(\alpha)^{e_1} \cdots g_r(\alpha)^{e_r} \equiv g(\alpha) = 0 \pmod{P\O_L}$. Hence $g_1(\alpha)^{e_1} \cdots g_r(\alpha)^{e_r} \in P\O_L$.} \end{proof} \end{flashcard}