%! TEX root = NF.tex % vim: tw=50 % 13/02/2024 10AM Recall $J \mid I \iff J \supset I$, by a Corollary from last time. \begin{flashcard}[gcd-lcm-defn] \begin{definition*}[$\gcd$ and $\lcm$] \cloze{$\gcd(I_1, I_2)$ is the smallest ideal $J$ such that $J \mid I_1$, $J \mid I_2$. $\lcm(I_1, I_2)$ is the largest ideal $J$ such that $I_1, I_2 \mid J$.} \end{definition*} \end{flashcard} \vspace{-1em} \textbf{Fact:} \begin{align*} \gcd(I_1, I_2) &= I_1 + I_2 = \{\alpha + \beta : \alpha \in I, \beta \in J\} \\ \lcm(I_1, I_2) &= I_1 \cap I_2 \end{align*} \subsubsection*{Norm of ideals} \begin{flashcard}[norm-of-ideals] \begin{definition*}[Norm of an ideal] \glssymboldefn{idealnorm}{$N(I)$}{$N(I)$} \cloze{Let $I \subset \O_K$ be an ideal. Then $N(I) = |\O_K / I|$.} \end{definition*} \end{flashcard} \vspace{-1em} \textbf{Recall:} If $I \neq \langle 0 \rangle$, then $\N(I) < \infty$. If $\alpha_1, \ldots, \alpha_d$ generate $I$ as a free $\ZZ$-module, then \[ \N(I) = \left( \frac{\tdisc(\alpha_1, \ldots, \alpha_d)}{\nfdisc(K)} \right)^{1/2} \] \begin{flashcard}[multiplicativity-of-norm] \begin{proposition*} Let $I, J \subset \O_K$ be non-zero ideals. Then \[ \N(IJ) = \N(I) \cdot \N(J) .\] \end{proposition*} \begin{proof} \cloze{Enough to prove when $J$ is a prime. This special case implies that \[ \N(P_1 \cdots P_k) = \N(P_1) \cdots \N(P_k) \] for primes $P_1, \ldots, P_k$. Apply this to the factorisation of $I, J, IJ$ to deduce the general case. Now let $J$ be a prime. Observe $\O_K / I \cong (\O_K / IJ) / (I / IJ)$. So \[ \N(I) = \N(IJ) / |I / IJ| .\] So it is enough to show $\N(J) = |I / IJ|$. Let $\alpha_1, \ldots, \alpha_{N(J)}$ be representatives for the cosets in $\O_K / J$. Let $\beta \in I \setminus IJ$. \textbf{Claim:} $\beta \alpha_1, \ldots, \beta \alpha_{N(J)}$ are representatives for $I / IJ$. Proof: \begin{enumerate}[(1)] \item Show $\forall \gamma \in I$, $\exists \alpha_j$ such that $\gamma \equiv \beta \alpha_j \pmod{IJ}$. Enough to show that $\exists \alpha \in \O_K$ such that $\gamma \equiv \beta \alpha \pmod{IJ}$, because $\exists \alpha_j \equiv \alpha \pmod{J}$. Need to find $\alpha$ such that $\gamma - \beta \alpha \in IJ$. This is the same as showing that $\gamma \in IJ + \langle \beta \rangle$. Note $\langle \beta \rangle = I \cdot P_1 \cdots P_k$, where none of the $P_j$'s are $J$. Now \begin{align*} IJ + \langle \beta \rangle &= \gcd(IJ, \langle \beta \rangle) \\ &= I \end{align*} That is good because $\gamma \in I$. \item Want to show $\beta \alpha_i \equiv \beta \alpha_j \pmod{IJ}$ implies $i = j$. We have $IJ \mid \langle \beta \rangle \langle \alpha_i - \alpha_j \rangle$. This is \begin{align*} IJ &\mid I \cdot P_1 \cdots P_k \langle \alpha_i - \alpha_j \rangle \\ \implies IJ &\mid P_1 \cdots P_k \langle \alpha_i - \alpha_j \rangle \\ J &\mid \langle \alpha_i - \alpha_j \rangle \\ \implies i &= j \end{align*} \end{enumerate}} \end{proof} \end{flashcard} \begin{flashcard}[ideal-norm-equals-field-norm-lemma] \begin{lemma*} Let $\alpha \neq 0 \in \O_K$. Then $N(\langle \alpha \rangle) = |N_{K / \QQ}(\alpha)|$. \end{lemma*} \begin{proof} \cloze{Let $\alpha_1, \ldots, \alpha_d$ be an \gls{intbasis}. Then \[ \langle \alpha \rangle = \alpha \alpha_1 \ZZ \oplus \cdots \oplus \alpha \alpha_d \ZZ .\] Now we can calculate: \begin{align*} \N(\langle \alpha \rangle)^2 &= \frac{\tdisc(\alpha \alpha_1, \ldots, \alpha \alpha_d)}{\tdisc(\alpha_1, \ldots, \alpha_d)} \end{align*} and \begin{align*} \tdisc(\alpha \alpha_1, \ldots, \alpha \alpha_d) &= \det(\sigma_i(\alpha \alpha_j))^2 \\ \sigma_1(\alpha)^2 \cdots \sigma_d(\alpha)^2 \cdot \det(\sigma_i(\alpha_j))^2 \\ &= N_{K / \QQ}(\alpha)^2 \nfdisc(K) \qedhere \end{align*}} \end{proof} \end{flashcard} \begin{flashcard}[nf-extension-ideal-association] Let $L / K$ be an extension of \glspl{nf}. Given an ideal $I \subset \O_K$, we can associate to it an ideal in $\O_L$: \cloze{\[ I \cdot \O_L = \{\alpha_1 \beta_1 + \cdots + \alpha_k \beta_k : \alpha_i \in I, \beta_i \in \O_L\} \] This is indeed an ideal in $\O_L$. It is the smallest ideal that contains $I$. \textbf{Fact:} \[ (I_1 \O_L) \cdot (I_2 \O_L) = (I_1 I_2)\O_L \] } \end{flashcard} \begin{flashcard}[nf-extension-ideal-association-reverse] Given an ideal $I \subset \O_L$, we can associate to it one in $\O_K$:\cloze{ $I \cap \O_K$. Again this is an ideal. In general: \[ (I \cap \O_K)(I_2 \cap \O_K) \neq (I_1 I_2 \cap \O_K) \] } \end{flashcard} \begin{flashcard}[ideal-association-division-equivalence-lemma] \begin{lemma*} The following are equivalent for $P \subset \O_K$ and $Q \subset \O_L$ primes: \begin{enumerate}[(1)] \item $Q \mid P\O_L$. \item $Q \cap \O_K = P$. \end{enumerate} \end{lemma*} \begin{proof} \phantom{} \begin{enumerate}[(1) $\implies$ (2)] \item[(1) $\implies$ (2)] \cloze{$Q \supset P\O_L \supset P$. So $Q \cap \O_K \supset P$. But $P$ is a maximal ideal, so enough to show that $Q \cap \O_K \subsetneq \O_K$. And this follows by $1 \notin Q$.} \item[(2) $\implies$ (1)] \cloze{(2) implies $Q \supset P$ and hence $Q \supset P \O_L$ because $Q$ is an ideal. Then $Q \mid P \O_L$.}\qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[lies-over-defn] \begin{definition*}[Lying above] \glsverbdefn{la}{lies above}{lies above} \glsverbdefn{lo}{lies over}{lies over} \glsverbdefn{lu}{lies under}{lies under} \cloze{Let $P \subset \O_K$, $Q \subset \O_L$ be primes. If $Q \mid P \O_L$ (or equivalently $Q \cap \O_K = P$), we say that $Q$ lies above or over $P$, and $P$ lies under or below $Q$.} \end{definition*} \end{flashcard} \begin{flashcard}[lies-under-existence-uniqueness-lemma] \begin{lemma*} For all primes $Q \subset \O_L$, there is a unique prime in $\O_K$ that \gls{lu} it. For all primes $P \subset \O_K$, there is at least one in $\O_L$ that \gls{lo} it. \end{lemma*} \begin{proof} \cloze{ \phantom{} \begin{enumerate}[(i)] \item Need to show $Q \cap \O_K$ is a prime. Observe that $1 \notin Q \cap \O_K$, so is a proper ideal. Since $\O_L / Q$ is finite, the image of $\O_K$ ($\O_K / Q \cap \O_K$) in it is also finite. Since $\O_K$ is infinite, $Q \cap \O_K \neq \langle 0 \rangle$. Suppose that $\alpha, \beta \in \O_K$ and $\alpha\beta \in Q \cap \O_K$. Then $\alpha\beta \in Q$, a prime ideal, hence $\alpha \in Q$ or $\beta \in Q$. So $\alpha \in Q \cap \O_K$ or $\beta \in Q \cap \O_K$. So $Q \cap \O_K$ is indeed a prime. \item We only need to show that $P\O_L$ is a proper ideal, because then it has prime factors. To that end: $\O_L = (P\O_L)(P^{-1}\O_L)$. If $\O_L = P\O_L$, then \[ \O_L = \O_L (P^{-1} \O_L) = P^{-1}\O_L \] so $P^{-1} \subset \O_L$. But we have seen that $P^{-1}$ contains elements which are not algebraic integers. \end{enumerate} } \end{proof} \end{flashcard}