%! TEX root = NF.tex % vim: tw=50 % 08/02/2024 10AM \begin{flashcard}[prime-factorisation-of-ideals-lemma] \begin{lemma*} Let $0 \neq I \subset \O_K$ be an ideal. Then there are primes $P_1, \ldots, P_k \subset \O_K$ such that $I \supset P_1 P_2 \cdots P_k$. \end{lemma*} \begin{proof} \cloze{Trivial if $I$ is a prime. Suppose that the lemma is false. Let $I$ be maximal among the ideals for which it fails (since $\O_K$ is Noetherian). Then $I$ is not a prime. Then there exists $\alpha, \beta \in \O_K \setminus I$ such that $\alpha\beta \in I$. Then \[ \ub{(I + \langle \alpha \rangle)}_{\supsetneq I}\ub{(I + \langle \beta \rangle)}_{\supsetneq I} \subset I \] By hypothesis, there exists $Q_1, \ldots, Q_l, R_1, \ldots, R_m \subset \O_K$ primes such that \[ Q_1 \cdots Q_l \subseteq I + \langle \alpha \rangle \qquad \text{and} \qquad R_1 \cdots R_m \subseteq I + \langle \beta \rangle .\] Multiplying these together, we see that the lemma holds for $I$ also.} \end{proof} \end{flashcard} \begin{flashcard}[unique-prime-factorisation-of-ideals-thm] \begin{theorem*} Non-zero ideals in $\O_K$ are products of primes in a unique way up to the order of the factors. \end{theorem*} \begin{proof} \cloze{Let $i$ be a non-zero ideal. Let $P_1 \subsetneq \O_K$ be an ideal that is maximal among those that contain $I$. Then $P_1$ is a maximal ideal, hence prime. Let $I_1 = I \cdot P^{-1}$ ($P^{-1}$ is notation for $P'$ from the Proposition about $PP' = \langle 1 \rangle$). Observe that $I_1 P = I$ and $I_1 \subset \O_K$ is an ideal. This is because $I_1 = I \cdot P^{-1} \subset PP^{-1} = \langle 1 \rangle = \O_K$. Also, $I_1 \supsetneq I$, for otherwise we would have $\alpha I \subset I$ for all $\alpha \in P^{-1}$, and this would imply $P' \subset \O_K$. Keep going with this, and we get sequences $P_1, P_2, \ldots$ and $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$ such that $I_{j - 1} = I_j P_j$. This must terminate, so $I_k = \O_K$ for some $k$. Then \[ I = P_1 I_1 = P_1 P_2 I_2 = \cdots = P_1 P_2 \cdots P_k I_k = P_1 \cdots P_k .\] We now show that $P_1 \cdots P_k = Q_1 \cdots Q_l$ implies $k = l$ and $P_j = Q_{\sigma(j)}$ for some permutation $\sigma$. It is enough to show that $P_1 = Q_j$ for some $j$, because then the claim follows by induction on $k + l$. Observe that $P_1 \supset P_1 \cdots P_k = Q_1 \cdots Q_l$. By the argument for the proof of the lemma, $P_1$ must be equal to one of the $Q_j$'s.} \end{proof} \end{flashcard} \begin{flashcard}[fractional-ideals-group] \begin{corollary*} For all non-zero fractional ideals $I \subset K$, there exists $I^{-1} \subseteq K$ a fractional ideal such that $II^{-1} = \langle 1 \rangle$. That is, fractional ideals form a group. \end{corollary*} \begin{proof} \cloze{If $I \subset \O_K$ is an ideal, then $I = P_1 \cdots P_k$ for some primes. We can use the lemma and take: $I^{-1} = P_1^{-1} \cdots P_k^{-1}$. In the general case, $I = J_1 \cdots J_2^{-1}$, where $J_1, J_2 \subseteq \O_K$. In fact we can take $J_2 = \langle a \rangle$ for some $a \in \ZZ$. Then use the special case, and take $I^{-1} = J^{-1} J_2$.} \end{proof} \end{flashcard} \begin{flashcard}[ideal-subset-iff-factor-coro] \begin{corollary*} Let $0 \neq I, J \subset \O_K$ be ideals. Then \[ I \supset J \iff \exists I_2 \subset \O_K \text{ such that } II_2 = J .\] \end{corollary*} \begin{proof} \cloze{Take $I_2 = J \cdot I^{-1}$. We need to show that $J \cdot I^{-1} \subseteq \O_K$. Let $\alpha \in J \cdot I^{-1}$. Then $\alpha I \subset J \subset I$, so by integrally closedness, $\alpha \in \O_K$ as needed.} \end{proof} \end{flashcard} \begin{flashcard}[O-K-UFD-iff-PID] \begin{corollary*} $\O_K$ is a UFD if and only if it is a PID. \end{corollary*} \begin{proof} \cloze{PID $\implies$ UFD holds in general. Suppose it is a UFD. All elements $\alpha \in \O_K$ are the product of primes. All principal ideals are products of principal prime ideals. Let $I$ be an ideal, and let $\beta \in I$. $\langle \beta \rangle \subset I \implies I \mid \langle \beta \rangle$. So all prime factors of $I$ are prime factors of $\langle \beta \rangle$, hence principal.} \end{proof} \end{flashcard}