%! TEX root = NF.tex % vim: tw=50 % 01/02/2024 10AM \begin{flashcard}[intbasis-iff-tdisc-minimal-thm] \begin{theorem*} Let $K$ be a \gls{nf}. Then $\alpha_1, \ldots, \alpha_d \in \O_K$ is integral basis if and only if \cloze{$|\tdisc(\alpha_1, \ldots, \alpha_d)|$} is minimal \cloze{among all $\QQ$-linear indepdendent tuples.} \end{theorem*} \begin{proof} \cloze{Let $\alpha_1, \ldots, \alpha_d$ be such a tuple. Let $\beta \in \O_K$. We need to prove that $\beta \in M = \alpha_1 \ZZ + \cdots + \alpha_d \ZZ$. Then \[ \mdisc(M + \beta\ZZ) = |M + \beta \ZZ / M|^{-2} \mdisc(M) \implies |M + \beta \ZZ / M| = 1 ,\] so $\beta \in M$.} \end{proof} \end{flashcard} \begin{flashcard}[disc-of-nf] \begin{definition*}[Discriminant of a number field] \glspropdefn{nfdisc}{discriminant}{\gls{nf}} \glssymboldefn{nfdisc}{disc}{disc} \cloze{The \emph{discriminant} of a \gls{nf} is the \gls{tdisc} of any \gls{intbasis}.} \end{definition*} \end{flashcard} \begin{example*} Quadratic fields: $K = \QQ(\sqrt{m})$, $m$ square-free, $m \neq 0$. Two cases: \begin{enumerate}[(1)] \item $m \equiv 2, 2 \pmod{4}$: $\O_K = \ZZ + \sqrt{m} \ZZ$, \[ \nfdisc(K) = \begin{vmatrix} 1 & \sqrt{m} \\ 1 & -\sqrt{m} \end{vmatrix}^2 = 4m \] \item $m \equiv 1 \pmod{4}$: $\O_K = \ZZ + \frac{1 + \sqrt{m}}{2} \ZZ$, \[ \nfdisc(K) = \begin{vmatrix} 1 & \frac{1 + \sqrt{m}}{2} \\ 1 & \frac{1 - \sqrt{m}}{2} \end{vmatrix}^2 = m \] \end{enumerate} \end{example*} \begin{flashcard}[q-div-disc-beta-in-OK-prop] \begin{proposition*} Let $\alpha_1, \ldots, \alpha_d \in \O_K$ be $\QQ$-linearly independent. Then $\exists q \in \ZZ_{\ge 0}$ such that \cloze{$q^2 \tdisc(\alpha_1, \ldots, \alpha_d)$ and all $\beta \in \O_K$ can be written as \[ \beta = \frac{a_1 \alpha_1 + \cdots + a_d \alpha_d}{q} \] with $a_1, \ldots, a_d \in \ZZ$.} \end{proposition*} \begin{proof} \cloze{Set \[ q = \left( \frac{\tdisc(\alpha_1, \ldots, \alpha_d)}{\nfdisc(K)} \right)^{1/2} \] Then \[ |\ub{\O_K / \alpha_1 \ZZ \oplus \cdots \oplus \alpha_d \ZZ}_{= M}| = q \] $\beta \in \O_K$, $q\beta = 0$ in $M$, so $q\beta \in \alpha_1\ZZ \oplus \cdots \oplus \alpha_d\ZZ$.} \end{proof} \end{flashcard} \subsubsection*{Unique factorisation of ideals} Consider $K = \QQ(\sqrt{-5})$, $\O_K = \ZZ[\sqrt{-5}]$. We have \[ 2 \cdot 3 = 6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \] In order to have unique factorisation, would have to have these elements split into smaller element. Say $2 = \pi_1 \pi_2$. $N(2) = 4$, $N(1 + \sqrt{-5}) = 1 + 5 = 6$. We would need $N(\pi_1) = \pm 2$. No such $\pi_1, \pi_2$. \begin{definition*}[Ideal] A set $I \subset \O_K$ is an ideal if \begin{align*} \alpha, \beta \in I &\implies \alpha + \beta \in I \\ \alpha \in I, \beta \in \O_K &\implies \alpha \beta \in I \end{align*} \end{definition*} \begin{example*} The principal ideal generated by $\beta \in \O_K$ is \[ \{\beta \cdot \alpha : \alpha \in \O_K\} = \beta\O_K = \langle \beta \rangle = \langle \beta \rangle_{\O_K} \] Observe that $\langle \beta \rangle = \langle \alpha \rangle$ if and only if $\beta = u\alpha$ for some unit $u \in \O_K^\times$. \end{example*} \begin{flashcard}[ideal-product-defn] \begin{definition*}[Product of ideals] Let $I, J \subset \O_K$ be two ideals. We define \[ IJ = \cloze{\{\alpha_1 \beta_1 + \cdots + \alpha_k \beta_k : \alpha_1, \ldots, \alpha_k \in I, \beta_1, \ldots, \beta_k \in J\}} .\] \end{definition*} \end{flashcard} \begin{remark*} \phantom{} \begin{itemize} \item The set of ideals with this multiplication is a semi-group. \item $\alpha \mapsto \langle \alpha \rangle$ is a homomorphism. \end{itemize} \end{remark*} \begin{definition*}[Prime ideal] An ideal $P \subsetneq \O_K$ is a prime ideal if the following holds: whenever $\alpha \beta \in P$ for some $\alpha, \beta \in \O_K$, then at least one of $\alpha, \beta$ is in $P$. \end{definition*} \vspace{-1em} \textbf{Fact:} This is equivalent to $\O_K / P$ being an integral domain (recall that an integral domain is a commutative, unital ring without $0$-divisors). \textbf{Fact:} $\langle a \rangle$ is a prime ideal $\iff$ $\alpha$ is a prime in $\O_K$. \begin{flashcard}[unique-factorisation-of-ideals-thm] \begin{theorem*} Let $K$ be a \gls{nf}. Then all non-zero ideals in $\O_K$ are a product \cloze{of non-zero prime ideals, and this factorisation is unique up to the order of the factors.} \end{theorem*} \end{flashcard} \begin{remark*} Addition on ideals can be defined as \[ I + J = \{\alpha + \beta : \alpha \in I, \beta \in J\} \] But this does not make the set of ideals a ring. Also, $\langle \alpha \rangle + \langle \beta \rangle \neq \langle \alpha + \beta \rangle$ in general. \end{remark*} \begin{flashcard}[ideals-of-OK-are-noetherian] \begin{lemma*} \phantom{} \begin{enumerate}[(1)] \item All ideals in $\O_K$ are finitely generated. That is, they are of the form $\beta_1 \O_K + \cdots + \beta_k \O_K$ for some $\beta_1, \ldots, \beta_k \in \O_K$. \item \cloze{If $I_1 \subset I_2 \subset I_3 \subset \cdots$ is a chain of ideals, then there exists $k$ such that $I_k = I_{k + 1} = I_{k + 2} = \cdots$.} \item \cloze{Any collection of ideals contains a maximal one with respect to $\subset$.} \end{enumerate} \end{lemma*} \fcscrap{ \vspace{-1em} This is called Noetherian property. } \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \cloze{$I \subset \O_K$ is finitely generated as a $\ZZ$-module, which is even stronger than (1).} \item \cloze{$I = \bigcup_{i = 1}^\infty I_j$ is an ideal, so $I = \beta_1 \O_K + \cdots + \beta_k \O_K$. Then there exists $m$ such that $\beta_1, \ldots, \beta_k \in I_m$. Then $I = I_m = I_{m + 1} = \cdots$.} \item \cloze{Suppose not. Then there is an infinite chain of ideals \[ I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots \] contradicting (2).} \qedhere \end{enumerate} \end{proof} \end{flashcard}