%! TEX root = NF.tex % vim: tw=50 % 30/01/2024 10AM \begin{flashcard}[Sigma-vector-defn] \begin{definition*} Let $K$ be a \gls{nf}. Recall that we have $d$ embeddings $\sigma_1, \ldots, \sigma_d : K \to \CC$, where $d = [K : \QQ]$. We write $r$ for the number of $\sigma_j$ such that $\sigma_j(K) \subset \RR$. Furthermore, we order the $\sigma_i$ such that $\sigma_1, \ldots, \sigma_r$ are precisely the real embeddings. Write $s = \frac{d - r}{2}$. There are $s$ pairs of complex conjugate embeddings. Denote them by $\tau_1, \ol{\tau_1}, \ldots, \tau_s, \ol{\tau_s}$ (relabelling of $\sigma_{r + 1}, \ldots, \sigma_d$). \glssymboldefn{vSigma}{$\Sigma$}{$\Sigma$} Define $\Sigma : K \to \RR^d$ by \[ \Sigma(\alpha) = \cloze{\begin{pmatrix} \sigma_1(\alpha) \\ \vdots \\ \sigma_r(\alpha) \\ \Re(\tau_1(\alpha)) \\ \Im(\tau_1(\alpha)) \\ \vdots \\ \Re(\tau_s(\alpha)) \\ \Im(\tau_s(\alpha)) \end{pmatrix}} \] This is $\QQ$-linear. \end{definition*} \end{flashcard} \begin{flashcard}[Sigma-det-lemma] \begin{lemma*} Let $\alpha_1, \ldots, \alpha_d \in K$. Then \[ \tdisc(\alpha_1, \ldots, \alpha_d) = \cloze{(-4)^s \det (}\vSigma(\alpha_1), \cloze{\ldots, \vSigma(\alpha_d))^2} \] \end{lemma*} \begin{proof} \cloze{The matrix $[\sigma_i(\alpha_j)]_{ij}$ has the following rows somewhere: \begin{center} \includegraphics[width=0.6\linewidth]{images/917b08413bc549a1.png} \end{center} $\det(\sigma_i(\alpha_j)) = \pm (-2i)^s \det(\Sigma(\alpha_1), \ldots, \Sigma(\alpha_d)))$. Squaring this we get the claim.} \end{proof} \end{flashcard} \begin{flashcard}[lattice-in-Rd] \begin{definition*}[Lattice] \glsnoundefn{latt}{lattice}{lattices} \cloze{A \emph{lattice} in $\RR^d$ is an additive subgroup of the form \[ \Lambda = v_1 \ZZ \oplus \cdots \oplus v_d \ZZ \] where $v_1, \ldots, v_d \in \RR^d$.} \end{definition*} \end{flashcard} \begin{flashcard}[fundamental-domain-defn] \begin{definition*}[Fundamental domain] \glsnoundefn{fundom}{fundamental domain}{fundamental domains} \cloze{A \emph{fundamental domain} is a \emph{Borel} set which contains exactly one point from each coset of some \gls{latt} $\Lambda$.}\fcscrap{ See \courseref[Probability \& Measure]{PM} for a definition of Borel sets. The rough idea is that Borel sets are the sets for which we have a well-defined notion of volume.} \end{definition*} \end{flashcard} \begin{example*} Fundamental parallelepiped: \[ [0, 1) \cdot v_1 + \cdots + [0, 1) \cdot v_d \] \end{example*} \begin{lemma*} All \gls{fundom} have the same volume. \end{lemma*} \begin{proof} Out of the scope of this course (but should be fairly simple if you have studied \courseref[Probability \& Measure]{PM}). \end{proof} \begin{flashcard}[coVol-notation] \begin{notation*} \glssymboldefn{coVol}{coVol}{coVol} We use $\coVol(\cloze{\Lambda})$ to denote \cloze{the volume of any \gls{fundom} of $\Lambda$ (this is well-defined by the above lemma).} \end{notation*} \end{flashcard} \textbf{Observe:} \[ \Vol([0, 1) v_1 + \cdots + [0, 1)v_d) = |\det(v_1, \ldots, v_d)| \] \[ \tdisc(\alpha_1, \ldots, \alpha_d) = (-4)^s \coVol(\vSigma(\alpha_1 \ZZ + \cdots + \vSigma(\alpha_d)\ZZ)^2 .\] \begin{flashcard}[disc-of-module-defn] \begin{definition*}[Discriminant of a module] \glssymboldefn{mdisc}{disc}{disc} \glspropdefn{mdisc}{discriminant}{module} \cloze{The \emph{discriminant} of a module of rank $d$ is the discriminant of any basis of it (this is well-defined by part (3) of the following proposition).} \end{definition*} \end{flashcard} \begin{flashcard}[disc-volume-le-prop] \begin{proposition*} Let $\alpha_1, \ldots, \alpha_d, \beta_1, \ldots, \beta_d \in K$ which are linearly independent over $\QQ$. Let $A \in \QQ^{d \times d}$ such that \[ (\beta_1, \ldots, \beta_d)^\top = A(\alpha_1, \ldots, \alpha_d)^\top .\] \begin{enumerate}[(1)] \item Then \[ \disc(\beta_1, \ldots, \beta_d) = \det(A)^2 \disc(\alpha_1, \ldots, \alpha_d) .\] \item If $\beta_1, \ldots, \beta_d \in \ZZ\alpha_1 + \cdots + \ZZ\alpha_d$, then \[ |\disc(\beta_1, \ldots, \beta_d)| \ge |\disc(\alpha_1, \ldots, \alpha_d)| .\] \item If the $\alpha$'s and $\beta$'s generate the same module, then the discriminants are the same. \end{enumerate} \end{proposition*} \begin{proof} \cloze{\[ [\sigma_j(\beta_i)]_{ij} = A[\sigma_j(\alpha_i)] \] First claim (1) follows by the definition of \gls{tdisc} and the properties of $\det$. For (2), there exists $A \in \ZZ^{d \times d}$ such that $(\beta_1, \ldots, \beta_d)^\top = A(\alpha_1, \ldots, \alpha_d)^\top$, and $|\det(A)| \ge 1$ since $\det(A) \neq 0$. For (3), we already have $\ge$ by (2). For $\le$, we can exchange the $\alpha$'s and $\beta$'s.} \end{proof} \end{flashcard} \begin{flashcard}[modules-disc-formula] \begin{proposition*} Let $M_1 \subset M_2$ be two modules of rank $d$ in $K$. Then \[ \mdisc(M_1) = \cloze{|M_2/M_1|^2} \mdisc(M_2) \] \end{proposition*} \end{flashcard} \vspace{-1em} Recall from \courseref{GRM}: \begin{theorem*} Let $M_1 \subset M_2$ be two free $\ZZ$-modules of rank $d$. Then $M_2$ has a basis $\alpha_1, \ldots, \alpha_d$ and there are $\alpha_1, \ldots, \alpha_d \in \ZZ$ such that $\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_d$ and $a_1\alpha_1, \ldots, a_d\alpha_d$ is a basis for $M$. \end{theorem*}