%! TEX root = NF.tex % vim: tw=50 % 25/01/2024 10AM Let $K$ be a \gls{nf}, $\O_K$ the \gls{algring}. Let $[K : \QQ] = d$. \textbf{Aim:} $\exists$ an \gls{intbasis}, that is $\alpha_1, \ldots, \alpha_d \in \O_K$ such that \[ \O_K = \alpha_1 \ZZ \oplus \cdots \oplus \alpha_d \ZZ \] If $M \subset K$ is a finitely generated $\ZZ$-module, then \[ M = \alpha_1 \ZZ \oplus \cdots \oplus \alpha_r \ZZ \] Observe $r = \dim_\QQ \Span_\QQ (M)$: \begin{itemize} \item $\alpha_1, \ldots, \alpha_r$ is linearly independent over $\QQ$. \item $\Span_\QQ(M) = \Span_\QQ(\alpha_1, \ldots, \alpha_r)$. \end{itemize} Observe $\Span_\QQ \O_K = K$: \begin{itemize} \item If $\alpha \in K$, then $a \alpha \in \O_K$ for suitable $a$. \end{itemize} \subsubsection*{Discriminant of tuple} Recall Norm and Trace (from \courseref[Galois Theory]{Galois}). Let $L / K$ be a finite extension of fields. For $\alpha \in L$, we can associate $m_\alpha : x \mapsto \alpha x$ on $L$ considered a vector space over $K$. The norm is $N_{L / K}(\alpha) = \det(m_\alpha) \in K$. The trace if $\Trace_{L / K} (\alpha) = \Trace(m_\alpha) \in K$. Recall the following properties: \begin{itemize} \item If $\alpha \in K$, $\Trace_{L / K}(\alpha) = [L : K]\alpha$, $N_{L / K}(\alpha) = \alpha^{[L : K]}$. \item $\alpha, \beta \in L$: $\Trace_{L / K}(\alpha + \beta) = \Trace_{L / K}(\alpha) + \Trace_{L / K}(\beta)$, $N_{L / K}(\alpha \beta) = N_{L / K}(\alpha) N_{L / K}(\beta)$. \item Let $M / L / K$: $\Trace_{M / K}(\alpha) = \Trace_{L / K}(\Trace_{M / L}(\alpha))$, similarly with norms. \end{itemize} Fix $K$. Let $d = [K : \QQ]$. Then there exists $d$ distinct embeddings $\sigma_1, \ldots, \sigma_d : K \to \CC$ (if $K = \QQ(\alpha)$, and $f$ is the minimal polynomial of $\alpha$, then $\sigma_1(\alpha), \ldots, \sigma_d(\alpha)$ are the roots of $f$). We have: \[ N_{K / \QQ}(\alpha) = \sigma_1(\alpha) \cdots \sigma_d(\alpha) \] \[ \Trace_{K / \QQ}(\alpha) = \sigma_1(\alpha) + \cdots + \sigma_d(\alpha) \] If $\alpha \in \O_K$, then $N_{K / \QQ}(\alpha), \Trace_{K / \QQ}(\alpha) \in \ZZ$. If $\alpha$ is such that $K = \QQ(\alpha)$, and \[ f(X) = X^d + a_{d - 1} x^{d - 1} + \cdots + a_0 \] is its minimal polynomial, then \[ N_{K / \QQ}(\alpha) = (-1)^d a_0, \qquad \Trace_{K / \QQ}(\alpha) = -a_{d - 1} .\] Fix $K$. Write $N = N_{K / \QQ}$, $\Trace = \Trace_{K / \QQ}$. \begin{flashcard}[disc-of-tuple-defn] \begin{definition*}[Discriminant] \glssymboldefn{disc}{disc}{disc} \glspropdefn{tdisc}{discriminant}{tuple} \cloze{Let $\sigma_1, \ldots, \sigma_d$ be the embeddings $K \to \CC$. Let $\alpha_1, \ldots, \alpha_d \in K$. Then we write \[ \disc(\alpha_1, \ldots, \alpha_d) = \det(\sigma_i(\alpha_j)) .\] Note that $\det(\sigma_i(\alpha_j))$ denotes the determinant of the matrix whose $ij$-th entry is $\sigma_i(\alpha_j)$.} \end{definition*} \end{flashcard} \begin{example*} \[ \tdisc(1, \alpha, \alpha^2, \ldots, \alpha^{d - 1}) = \prod_{1 \le i < j \le d} (\sigma_i(\alpha) - \sigma_j(\alpha))^2 \] If $K = \QQ(\alpha)$ and $f$ is the minimal polynomial, then this equals \[ (-1)^{\frac{d(d - 1)}{2}} N(f'(\alpha)) .\] \end{example*} \begin{note*} \[ \ZZ[\alpha] = \ZZ + \alpha \ZZ + \cdots + \alpha^{d - 1} \ZZ \] for $\alpha \in \O_K$. \end{note*} \begin{flashcard}[disc-is-det-tr-lemma] \begin{lemma*} \[ \tdisc(\alpha_1, \ldots, \alpha_d) = \det(\Trace(\alpha_i \alpha_j)) \] \end{lemma*} \begin{proof} \cloze{Write $[x_{ij}]_{ij}$ for the $d \times d$ matrix with entries $x_{ij}$. Note \[ [\sigma_j(\alpha_i)]_{ij} [\sigma_j(\alpha_k)]_{jk} = \left[ \sum_{j = 1}^d \sigma_i(\alpha_i \alpha_j) \right] = [\Trace(\alpha_i \alpha_k)]_{ik} \] Determinants are multiplicative and invariant under transpose.} \end{proof} \end{flashcard} \begin{flashcard}[disc-zero-iff-lindep] \begin{lemma*} \[ \tdisc(\alpha_1, \ldots, \alpha_d) = 0 \iff \alpha_1, \ldots, \alpha_d \text{ are linearly dependent over $\QQ$} \] \end{lemma*} \begin{proof} \cloze{If $\alpha_1, \ldots, \alpha_d$ are linearly dependent, then the rows of $[\Trace(\alpha_i \alpha_j)]$ are also linearly dependent. Then $\det = 0$, so $\tdisc = 0$. For the converse, suppose for the contrary that $\alpha_1, \ldots, \alpha_d$ are linearly independent over $\QQ$, and for sake of contradiction, assume $\tdisc = 0$, so $\tdisc(\Trace(\alpha_i \alpha_j)) = 0$. Then there exists some $a_1, \ldots, a_d$ not all $0$ such that \[ \sum_{i = 1}^d a_i \Trace(\alpha_i \alpha_j) = 0 ~\forall j \] This is equivalent to (by additivity of $\Trace$): \[ \Trace \left( \left( \sum_i a_i \alpha_i \right) \alpha_j \right) = 0 ~\forall j \] By linear independence of $\alpha_1, \ldots, \alpha_d$, \begin{itemize} \item $\sum_i a_i \alpha_i \neq 0$. \item $\exists b_1, \ldots, b_d$ such that $\beta^{-1} = \sum_j b_j \alpha_j$. \end{itemize} Then \[ \sum_j b_j \Trace(\beta \cdot \alpha_j) = 0 \] hence \[ \Trace(\beta \cdot \beta^{-1}) = \Trace(1) = 0 \] which is a contradiction, since $\Trace(1) = d \neq 0$.} \end{proof} \end{flashcard} \begin{corollary*} $\alpha_1, \ldots, \alpha_d$ are linearly independent over $\QQ$ if and only if the complex vectors $(\sigma_1(\alpha_j), \ldots, \sigma_d(\alpha_j))^\top \in \CC^d$ for $j = 1, \ldots, d$ are linearly independent over $\CC$. \end{corollary*}