%! TEX root = NF.tex % vim: tw=50 % 23/01/2024 10AM \subsection{Ring of integers} Let $\alpha \in \CC$ be algebraic. Then there is a unique monic irreducible polynomial $f \in \QQ[X]$ of minimal degree such that $f(\alpha) = 0$. This is called the minimal polynomial. \begin{flashcard}[algebraic-integer-defn] \begin{definition*}[Algebraic Integer] \glsnoundefn{algint}{algebraic integer}{algebraic integers} \cloze{$\alpha \in \CC$ is an algebraic integer if it has minimal polynomial $f_\alpha \in \ZZ[X]$.} \end{definition*} \end{flashcard} \begin{remark*} If $\alpha$ is a root of a monic polynomial $f \in \ZZ[X]$, then $\alpha$ is an algebraic integer. Indeed, then we can write $f = f_\alpha \cdot h$ with $f_\alpha$ the minimal polynomial of $\alpha$, and $h \in \QQ[X]$ monic. By Gauss's Lemma (see \courseref{GRM}), both $f_\alpha, h \in \ZZ[X]$. \end{remark*} \begin{theorem*} \glsnoundefn{algring}{ring of integers}{N/A} \glsref[algint]{Algebraic integers} form a ring. \end{theorem*} \begin{flashcard}[intring-notation] \begin{notation*} \glssymboldefn{intring}{$Ocal$}{$Ocal$} The ring of algebraic integers is denoted \cloze{by $\mathcal{O}$. If $K$ is a \gls{nf}, then $\mathcal{O}_K = \mathcal{O} \cap K$.} \end{notation*} \end{flashcard} \begin{example*} If $K = \QQ$, $\O_K = \ZZ$. Let $\frac{a}{b} \in \QQ$. $f_\alpha = x - \frac{a}{b}$. So $\frac{a}{b} \in \O_K \iff \frac{a}{b} \in \ZZ$. \end{example*} \begin{example*} \begin{flashcard}[quadratic-fields-intring] Quadratic fields: Let $K = \QQ(\sqrt{m})$, where $m \neq 0, 1 \in \ZZ$ is square-free. Then \[ \O_K = \cloze{\begin{cases} a + b\sqrt{m} & a, b \in \ZZ \text{ if $m \equiv 2, 3 \pmod{4}$} \\ a + b \left( \frac{1 + \sqrt{m}}{2} \right) & a, b \in \ZZ \text{ if $m \equiv 1 \pmod{4}$} \end{cases}} \] \end{flashcard} All elements of $K$ are of the form $\alpha = a + b\sqrt{m}$ with $a, b \in \QQ$. $\alpha \in \O_K \iff 2a \in \ZZ, a^2 - b^2m \in \ZZ$. \[ f_\alpha = (x - (a + b\sqrt{m}))(x - (a - b\sqrt{m})) = x^2 - 2ax + a^2 - b^2m .\] \end{example*} \begin{example*} $n \in \ZZ_{\ge 3}$. $K = \QQ(\ub{e^{2\pi i / n}}_{\theta_n})$. $\O_K = \ZZ[\theta_n] = \ZZ \oplus \theta_n \ZZ \oplus \cdots \oplus \theta_n^{\varphi(n) - 1} \ZZ$. Here, the direct sum notation ($\oplus$) means that each element of the ring $\O_K$ can be decomposed in a unique way, as opposed to if we used sum notation ($+$), where we would just assert that every element can be written in some way (but possibly multiple). \end{example*} \vspace{-1em} Why not work with $\ZZ[\alpha] \subset \QQ[\alpha]$? Only $\O_K$ works. \begin{flashcard}[algint-tfae] \begin{proposition*} Let $\alpha \in \CC$. Then the following are equivalent: \begin{enumerate}[(i)] \item $\alpha \in \O$. \item \cloze{$\ZZ[\alpha]$ is a finitely generated $\ZZ$-module, that is \[ \ZZ[\alpha] = \beta_1 \ZZ + \beta_2 \ZZ + \cdots + \beta_n \ZZ \] for some $\beta_1, \ldots, \beta_n \in \ZZ[\alpha]$.} \item \cloze{There is a finitely generated $\ZZ$-module $M \subset \CC$ such that $\alpha M \subset M$.} \end{enumerate} \end{proposition*} \begin{proof} \phantom{} \begin{enumerate}[(1) $\implies$ (2)] \item[(1) $\implies$ (2)] \cloze{We show that \[ \ZZ[\alpha] = \ub{\ZZ + \alpha\ZZ + \cdots + \ZZ\alpha^{d - 1}\ZZ}_{M} \] where $d = \deg f_\alpha$. Enough to show that $\alpha^k \in M$ for all $n \in \ZZ_{\ge 0}$. Observe that for $n \ge d$: \[ \alpha^n = \ub{(\alpha^d - f_\alpha(\alpha)) \alpha^{n - d}}_{\in \alpha^{n - 1} \ZZ + \cdots + \ZZ} .\] Using this and induction, the claim follows.} \item[(2) $\implies$ (3)] \cloze{Trivial.} \item[(3) $\implies$ (1)] \cloze{Let $M = \beta_1 \ZZ + \cdots + \beta_k \ZZ$ be finitely generated, and suppose $\alpha M \subset M$. We exhibit a monic polynomial $f \in \ZZ[X]$ such that $f(\alpha) = 0$. There are $m_{ij} \in \ZZ$ such that \[ \alpha \beta_i = m_{i1} \beta_1 + \cdots + m_{in} \beta_n \qquad \forall i = 1, \ldots, n \] Let $A$ be the matrix with entries $m_{ii}$. Then \[ A \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha \beta_1 \\ \vdots \\ \alpha\beta_n \end{pmatrix} \] $\alpha$ is an eigenvalue of $A$. Then $f = \det(xI - A) \in \ZZ[X]$ is monic, and has the property that $f(\alpha) = 0$.} \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[algint-ring-proof] \begin{proof}[Proof that algebraic integers form a ring] \cloze{Let $\alpha, \beta \in \O$. We want to show that $\alpha - \beta$ and $\alpha \beta \in \O$. Let $M = \ZZ[\alpha, \beta]$. Clearly $(\alpha - \beta) M \subset M$ and $(\alpha\beta) M \subset M$. We show that $M$ is a finitely generated $\ZZ$-module. Specifically \[ M = \sum_{i = 1}^n \sum_{j = 1}^m \alpha_i \beta_j \ZZ ,\] where $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ are generators for $\ZZ[\alpha]$ and $\ZZ[\beta]$ respectively. $\alpha, \beta \in M$, and $M$ is a ring.} \end{proof} \end{flashcard} \subsubsection*{Additive structure of $\mathcal{O}_k$} \begin{theorem*} Let $K$ be a \gls{nf}. Then $\exists \beta_1, \ldots, \beta_d \in \O_K$ such that \[ \O_K = \beta_1 \ZZ \oplus \cdots \oplus \beta_d \ZZ \] with $d = [K : \QQ]$. \end{theorem*} \begin{definition*} \glsnoundefn{intbasis}{integral basis}{integral bases} Such a tuple of $\beta$'s is called an integral basis. \end{definition*} \begin{hiddenflashcard}[integral-basis-defn] \begin{definition*}[Integral basis] \cloze{Let $K$ be a \gls{nf}. Then there exists $\beta_1, \ldots, \beta_d \in \O_K$ such that \[ \O_K = \beta_1 \ZZ \oplus \cdots \oplus \beta_d \ZZ \] with $d = [K : \QQ]$. Such a tuple is called an \emph{integral basis}.} \end{definition*} \end{hiddenflashcard} \vspace{-1em} Suppose that we know that $\O_K$ is a finitely generated $\ZZ$-module. By the structure theorem, \[ \O_K \cong \ZZ^r \oplus \cancel{\ZZ / m_1 \ZZ} \oplus \cdots \oplus \cancel{\ZZ / m_s \ZZ} \]