%! TEX root = NF.tex % vim: tw=50 % 12/03/2024 10AM $p \in \ZZ_{\ge 3}$ a prime, $\theta_p = e^{2\pi i / p}$, $K = \QQ(\theta_p)$. $\forall i, j \in \ZZ$ with $I \not\equiv j \pmod{p}$, there exists $u_{i, j} \in \ZZ[\theta_p]^\times$ such that $p = u_{i, j} (1 - \theta_p)^{p - 1}$. Proof of $\O_K = \ZZ[\theta_p]$. We made an indirect assumption, and we want to get a contradiction. We found $\beta \in \O_K \setminus z\ZZ[\theta_p]$ and $\gamma \in \ZZ[\theta_p]$ and $\alpha \in \ZZ$ such that \[ (1 - \theta_p) \beta = a + (1 - \theta_p)\gamma .\] We have $p \nmid a$, for otherwise \[ \beta = \frac{a}{1 - \theta_p} + \gamma ,\] and if $a = pa'$, then \[ \frac{a}{1 - \theta_p} = \frac{a'u (1 - \theta_p)^{p - 1}}{1 - \theta_p} \in \ZZ[\theta_p] .\] So $\beta \in \ZZ[\theta_p]$, which is not the case. This proves $p \nmid a$. On the other hand, \[ \frac{a}{1 - \theta_p} = \beta - \gamma \in \O_K .\] Then \[ \ub{\frac{1}{a} \left( \frac{a}{1 - \theta_p} \right)^{p - 1}}_{\in \O_K} = \ub{\frac{a^{p - 1}}{p}}_{\in \QQ} \] hence \[ \frac{a^{p - 1}}{p} \in \ZZ ,\] a contradiction to $p \nmid a$. Proof of the claim that: $\langle p \rangle = P^{p - 1}$ for a prime $P \subset \O_K$, and \[ P = \langle \theta_p^i - \theta_p^j \rangle \] for any $i, j \in \ZZ$ such that $i \not\equiv j \pmod{p}$. Let $P_{ij} = \langle \theta_p^i - \theta_p^j \rangle$, then $\langle p \rangle = P_{ij}^{p - 1}$. $N(\langle p \rangle) = p^{p - 1}$, hence $N(P_{ij}) = p$. So $P_{ij}$ must be a prime ideal. By uniqueness of factorisation, $P_{ij}$ does not depend on $i$ and $j$. \begin{flashcard}[regular-prime-defn] \begin{definition*}[Regular prime] \glsadjdefn{regp}{regular}{prime} \cloze{A prime $p \in \ZZ$ is regular if $p \nmid \cln(\QQ(\theta_p))$.} \end{definition*} \end{flashcard} \begin{flashcard}[regular-flt-thm] \begin{theorem*}[Regular Fermat's Last Theorem] \cloze{Let $p \ge 5$ ba a \emph{\gls{regp} prime}. Then there are no solutions of \[ x^p + y^p = z^p \] with $x, y, z \in \ZZ$. such that $p \nmid xyz$ (the case $p \nmid xyz$ is known as ``Case I'').} \end{theorem*} \end{flashcard} \begin{flashcard}[flt-subprop] \begin{proposition*} Assume that $x, y, z$ is a solution of $x^p + y^p = z^p$ and assume $\gcd(x, y, z) = 1$ and $p \nmid xyz$. Then \cloze{ \[ x + \theta_p y = u \alpha^p \] where $u \in \O_K^\times$, and $\alpha \in \O_K$.} \end{proposition*} \begin{proof} \cloze{Recall: \[ (x + y)(x + \theta_p y) \cdots (x + \theta_p^{p - 1} y) = z^p .\] Claim: there is no prime $Q \subset \O_K$ such that $Q \mid \langle x + \theta_p^i y \rangle, \langle x + \theta_p^j y \rangle$ for $i \not \equiv j \pmod{p}$. Suppose the contrary. Then \[ Q \mid \ub{\langle \theta_p^i y - \theta_p^j y \rangle}_{P\langle y \rangle}, \ub{\langle \theta_p^{-i} x - \theta_p^{-j} x \rangle}_{P\langle x \rangle} .\] If $Q = P$, then $P \mid \langle z \rangle^p$, so $P \mid \langle z \rangle$, so $z \in P \cap \ZZ = p\ZZ$, hence $p \mid z$, cotnradicting our assumption of being in Case I. So $Q \neq P$. Then $Q \mid \langle x \rangle, \langle y \rangle$, so $x, y \in Q$. We must have $\gcd(x, y) = 1$, for any common prime factor would also divide $z$ by $z^p = x^p + y^p$, and we assume $\gcd(x, y, z) = 1$. So we can find $a, b \in \ZZ$ such that $1 = ax + by$. Then $1 \in Q$, which is not possible. So we have proved the claim (that there is no prime $Q$ dividing more than one of the ideals $\langle x + \theta_p^i y \rangle$). Then $\langle x + \theta_p y \rangle = I^p$ for some ideal $I \subset \O_K$ (not necessarily prime). We assumed that $p \nmid \cln(K)$. Hence the only class in the class group whose $p$-th power is the unit element, that is the class of principal ideals, is the unit element itself (the class of principal ideals). We know that $I^p$ is principal because $I^p = \langle x + \theta_p y \rangle$, so $I$ must be principal too, and the proposition follows.} \end{proof} \end{flashcard} \begin{flashcard}[regular-flt-prop2] \begin{proposition*} Assume that $x, y, z$ is a solution of $x^p + y^p = z^p$ and assume $\gcd(x, y, z)$. Then we must have \cloze{$x \equiv y \pmod{p}$.} \end{proposition*} \end{flashcard} \begin{flashcard}[proof-of-regular-flt] \prompt{Proof of regular FLT? \\} \begin{proof} \cloze{Suppose that there is a solution $x, y, z$. We may assume $\gcd(x, y, z) = 1$ (by dividing by any common factor). By a previous proposition, we get $x \equiv y \pmod{p}$. Applying it to $x^p - z^p = y^p$, we get $x \equiv -z \pmod{p}$. Then \[ x^p + y^p - z^p \equiv 3x^p \pmod{p} \] But the LHS is equal to $0$, so $p \mid 3x^p$, but $p \nmid 3$, because $p \ge 5$, and $p \nmid x$ because of Case I.} \end{proof} \end{flashcard}