%! TEX root = NF.tex % vim: tw=50 % 05/03/2024 10AM The logarithmic embedding is \[ \log : K \to \RR^{r + s}; \alpha \mapsto (\log|\sigma_1(\alpha)|, \ldots, \log|\sigma_r(\alpha), 2\log|\tau_1(\alpha)|, \ldots, 2\log|\tau_s(\alpha)|)^\top ,\] which is a homomorphism from $(K, \cdot)$ to $(\RR^{r + s}, +)$. Observe that \[ \log|N(\alpha)| = \sum_{i = 1}^{r + s} (\log(\alpha))_j .\] We write $V \subset \RR^{r + s}$ for $\{x : x + 1 \cdots + x_{r + s} = 0\}$. If $\alpha \in \O_K^\times$, then $N(\alpha) = \pm 1$, and hence $\log \alpha \in V$. \begin{proposition} $\ker(\log) = W$ and $|W| < \infty$. \end{proposition} \begin{proposition} $\log(\O_K^\times)$ is a \gls{latt} in $V$. \end{proposition} \begin{proof}[Proof of \nameref{dirichlet_unit_thm} (non-examinable)] Let $x_1, \ldots, x_{r + s - 1}$ be a basis for $\log(\O_K^\times)$. We can choose $u_j$ such that $\log(u_j) = x_j$. Easy to check that the theorem holds with this choice. \end{proof} \begin{proof}[Proof of Proposition 1] If $\log \alpha = 0$, then $|\sigma_j(\alpha)| = 1$, $|\tau_j(\alpha)| = 1$ for all $j$. This means that \[ \| \Sigma(\alpha) \| \le \sqrt{d} ,\] and $\Sigma(\O_K)$ is a \gls{latt}, so it has a finite intersection with $B(0, \sqrt{d}) = \{v \in \RR^d \st \|v\| < \sqrt{d}\}$. Then $|\ker(\log)| < \infty$. $\ker(\log)$ is a group under $\cdot$. So $\alpha \in \ker \log$ has finite, i.e. $\alpha^m = 1$ for some $n \in \ZZ_{> 0}$. Thus $\alpha \in W$. \end{proof} \begin{lemma*} Let $\Lambda \subset V$ be an additive subgroup. Then $\Lambda$ is a \gls{latt} if and only if there is $R \in \RR_{> 0}$ such that $\Lambda \cap B(x, R)$ is finite and non-empty for all $x \in V$. \end{lemma*} \begin{proof} Omitted. \end{proof} \begin{proof}[Proof of Proposition 2] To prove Proposition 2, we need the following: Given $x \in \RR^{r + s}$ with $\sum_j x_j = 0$, we need to show that the set of units $u \in \O_K^\times$ that satisfy \[ \|\log(u) - x\| < R \] is finite and non-empty. For simplicity assume $s = 0$. The above inequality is equivalent to \[ e^{x_j} e^{-\tilde{R}} \le |\sigma_j(u)| \le e^{x_j} \cdot e^{\tilde{R}} \] for all $i$. Finiteness follows from $\Sigma(\O_K)$ being a lattice. Non-empty is more difficult. Observe: enough to show $\exists u \in \O_K^\times$ with \[ |\sigma_j(u)| \le C_0 e^{x_j} . \tag{$*$} \label{lec14_l77} \] This is because: $|N(u)| = 1$, so \[ \prod |\sigma_j(u)| = 1 \implies |\sigma_j(u)| \ge \left( \prod_{k \neq j} |\sigma_k(u)| \right)^{-1} \ge C_0^{d - 1} e^{\sum_{k \neq j} x_k} = C_0^{d - 1} e^{-x_j} \] By \nameref{mink_thm} applied to the \gls{latt} $\Sigma(\O_K)$ and the convex set \[ \{v : |v_j| < C_0 e^{x_j}\} \] gives $\alpha \in \O_K$ that satisfies \eqref{lec14_l17} provided $C_0$ is large enough. Now the problem is that $\alpha$ may not be a unit. However: \[ |N(\alpha)| \le C_0^d \prod_i e^{x_i} = C_0^d \] where $C_0^d$ is some constant which depends only on $K$. There are only finitely many principal ideals in $\O_K$ with norm $\le C_0^d$. Fix a generator in each of them, say $\alpha_I$ for the generator of $I$. Let $\alpha \in \O_K$ that the argument gives, so it satifies \eqref{lec14_l77} and $|N(\alpha)| < C_0^d$. Then $\langle \alpha \rangle = \langle \alpha_{\langle \alpha \rangle} \rangle$. Therefore $\alpha \cdot \alpha_{\langle \alpha \rangle}^{-1} \in \O_K^\times$. \end{proof} \subsubsection*{Cyclotomic Fields} \begin{notation*} $k \in \ZZ_{> 0}$, then $\theta_k = 2^{2\pi i / k}$. This is a primitive $k$-th root of unity. \end{notation*} \begin{flashcard}[cyclotomic-field-roots-of-unity-lemma] \begin{lemma*} Fix $p \in \ZZ$ a prime. Let $K = \QQ(\theta_p)$. Let $W$ be the roots of unity in $\O_K$. Then \[ W = \{\pm \theta_p^k : k = 0, \ldots, p - 1\} = \{\theta_{2p}^k : k = 0, \ldots, 2p - 1\} .\] \end{lemma*} \begin{proof} \cloze{Let $t \in \RR_{> 0}$ minimal with the property that $e^{2\pi i t} \in W$. Recall that $W$ is finite. Recall that $W$ is finite, so this minimum exists. Claim: if $e^{2\pi i s} \in W$, then $s / t \in \ZZ$. If not then $e^{2\pi i (s - (s / t) t} \in W$. This contradicts minimality. I know $e^{2\pi i / 2p} \in W$. So $t = \frac{1}{k2p}$ for some $k \in \ZZ_{> 0}$.} \end{proof} \end{flashcard}