%! TEX root = NF.tex % vim: tw=50 % 29/02/2024 10AM Note that for $I \subset \O_K$, there exists $k > 0$ such that $I^k$ is principal if and only if the order of $I$ in $\Cl(K)$ is finite. But we now that $\Cl(K)$ is finite, hence the order is always finite, so there always exists some $k > 0$ such that $I^k$ is principal. \textbf{Units:} $\alpha \in \O_K$ is a unit if $\alpha^{-1} \in \O_K$. Notation: \[ \O_K^\times \defeq \{u \in \O_K \st \text{$u$ is a unit}\} .\] \begin{flashcard}[units-lemma] \begin{lemma*} The following are equivalent for $\alpha \in \O_K$: \begin{enumerate}[(1)] \item $\alpha \in \O_K^\times$. \item \cloze{$N(\alpha) = \pm 1$.} \item \cloze{$\langle \alpha \rangle = \O_K$.} \end{enumerate} \end{lemma*} \begin{proof} \phantom{} \begin{enumerate}[(1) $\Rightarrow$ (2)] \item[(1) $\Rightarrow$ (2)] \cloze{$N(\alpha) \in \ZZ$ and \[ N(\alpha) N(\alpha^{-1}) = N(\alpha \alpha^{-1}) = N(1) = 1 \] with both $N(\alpha), N(\alpha^{-1}) \in \ZZ$ since $\alpha, \alpha^{-1} \in \O_K$. Hence $N(\alpha) = \pm 1$.} \item[(2) $\Rightarrow$ (3)] \cloze{Note: \[ N(\langle \alpha \rangle) = |N(\alpha)| = 1 \implies |\O_K / \langle \alpha \rangle| = 1 \implies \langle \alpha \rangle = \O_K .\]} \item[(3) $\Rightarrow$ (1)] \cloze{If $\langle \alpha \rangle = \O_K$, then $1 = \alpha \cdot \beta$ for some $\beta \in \O_K$. Hence $\alpha \in \O_K^\times$.} \end{enumerate} \end{proof} \end{flashcard} \subsubsection*{Quadratic fields} Let $m \neq 0, 1$, $m$ square-free, $K = \QQ(\sqrt{m})$. Recall: \[ \O_K = \begin{cases} a + b\sqrt{m} : a, b \in \ZZ & \text{if $m \equiv 2, 3 \pmod{4}$} \\ \frac{a + b \sqrt{m}}{2} : a, b \in \ZZ, 2 \mid a + b & \text{if $m \equiv 1 \pmod{4}$} \end{cases} \] We have \[ N(a + b\sqrt{m}) = (a + b\sqrt{m})(a - b\sqrt{m}) = a^2 - mb^2 .\] There are $2$ cases: \begin{itemize} \item $m \equiv 2, 3 \pmod 4$: $\O_K^\times$ is the elements $u = a + b\sqrt{m}$ with $a, b \in \ZZ$ such that \[ a^2 - mb^2 = \pm 1 \tag{$*$} \label{lec13_l70} \] \item $m \equiv 1 \pmod{4}$: $\O_K^\times$ is the elements $u = \frac{a + b\sqrt{m}}{2}$ with $a, b \in \ZZ$ such that \[ a^2 - mb^2 = \pm 4 \tag{$**$} \label{lec13_l75} \] \end{itemize} First consider $m < 0$. If $m \le -5$, then \[ -mb^2 = \pm 4 - a^2 \le 4 \implies |b| \le \frac{4}{5} \implies b = 0 .\] Then $u = \pm 1$. We can go over the cases $m = -1, -2, -3, -4$ by hand: \begin{itemize} \item $m = -1$, the units are $\pm 1$, $\pm \sqrt{-1}$. \item $m = -2, -4$ the units are $\pm 1$. \item $m = -3$, the units are $\pm 1, \frac{\pm 1 \pm \sqrt{-3}}{2}$. \end{itemize} Now move onto $m \ge 2$. \begin{flashcard}[quadratic-units-thm] \begin{theorem*} Let $K = \QQ(\sqrt{m})$, $m \ge 2$, squarefree. Then there is a unit $u > 1$ that is smallest, and all units are of the form:\cloze{ \[ \O_K^\times = \{\pm u^n : n \in \ZZ\} .\]} \end{theorem*} \begin{proof} \cloze{We first show that all units $u > 1$ are of the form $u = a + b\sqrt{m}$ with $a, b > 0$. Note: \[ N(u) = \pm 1 = (a + b\sqrt{m})(a - b\sqrt{m}) \] hence \[ \{\pm u^{\pm 1}\} = \{\pm a \pm \sqrt{m} b\} .\] If $u > 1$, then these are distinct, and $a + \sqrt{m} b$ are the largest among them. Therefore $a, b > 0$ indeed. The fact that $u$ with $u > 1$ exists is not examinable, but there are two ways to see this: \begin{enumerate}[(1)] \item The Pell equation $a^2 - mb^2 = 1$ always has positive solutions (see \courseref[Part II Number Theory]{NT}). \item Can be proved using \nameref{mink_thm}. We will sketch this proof. \end{enumerate} We prove that there exists a smallest $u$ among those $> 1$. Suppose not. Then $\exists u_1, u_2, \ldots, \in \O_K^\times$ such that $u_1, u_2 > u_3 > \cdots > 1$. Then $\frac{u_n}{u_{n + 1}} \to 1$, with each term lying in $\O_K^\times$ and greater than $1$. Then $\frac{u_n}{u_{n + 1}} \ge \frac{1 + \sqrt{m}}{2} > 1$, which is a contradiction. Let $v \in \O_K^\times$. We show that $v = \pm u^{\pm n}$ for some $n \in \ZZ$. Clearly this is true for $v$ if and only if true for $\pm v^{\pm 1}$. So we can assume $v \ge 1$. $v = 1$ is obvious, so assume $v > 1$. We cannot have \[ v \in (u^n, u^{n + 1}) \] for any $n \ge 0$ because then $v \cdot u^{-n} \in \O_K^\times$ and $1 < v \cdot u^{-n} < u$, contradicting the choice of $u$. So $v = u^n$ for some $n \ge \ZZ_{\ge 1}$.} \end{proof} \end{flashcard} This $u$ in the theorem is called the \emph{fundamental unit}. We can find the fundamental unit by searching through the solutions of \eqref{lec13_l70} or \eqref{lec13_l75}. For this the following observation helps: Let $(a_1, b_1)$ and $(a_2, b_2)$ be solutions of \eqref{lec13_l70} with $a_1, a_2, b_1, b_2 \ge 0$. Then $1 \le b_1 < b_2$ implies: \[ a_1^2 = mb_1^2 \pm 1 < mb_2^2 \pm 1 = a_2^2 \] So $a_1^2 < a_2^2$, so in fact $a_1 + b_1 \sqrt{m} < a_2 + b_2 \sqrt{m}$. So when looking for the fundamental solution, it suffices to find the solution with $b$ minimal. \begin{flashcard}[dirichlet-unit-thm] \begin{theorem*}[Dirichlet's unit theorem] \label{dirichlet_unit_thm} \cloze{Let $K$ be a \gls{nf} with $r$ real embeddings and $s$ pairs of complex embeddings. Let $W$ denote the roots of unity contained in $\O_K$, that is $\alpha \in \O_K$ such that $\alpha^m = 1$ for some $m \in \ZZ$. Then there are $r + s - 1$ units $u_1, u_2, \ldots,u_{r + s - 1} \in \O_K^\times$ such that all units can be written uniquely as \[ \omega u_1^{n_1} \cdots u_{r + s - 1}^{n_{r + s - 1}} \] for some $n_1, \ldots, n_{r + s - 1} \in \ZZ$ and $\omega \in W$. In addition, $|W| < \infty$.} \end{theorem*} \end{flashcard}