%! TEX root = NF.tex % vim: tw=50 % 27/02/2024 10AM Recall: $\sigma_1, \ldots, \sigma_r$ are the embeddings $K \to \CC$ with real image, $\tau_1, \ol{\tau_1}, \ldots, \tau_s, \ol{\tau_s}$ are the other embeddings, $d = r + 2s$. We defined \begin{align*} \Sigma : K &\to \RR^d \\ \Sigma(\alpha) &= (\sigma_1(\alpha), \ldots, \sigma_r(\alpha), \Re(\tau_1(\alpha)), \Im(\tau_1(\alpha)), \ldots, \Re(\tau_s(\alpha)), \Im(\tau_s(\alpha))) \end{align*} $\Sigma(\O_K) \subset \RR^d$ is a \gls{latt}, i.e. it is an additive subgroup of $\RR^d$ generated by $d$ linearly independent elements. \[ \coVol(\Sigma(\O_K)) = 2^{-s} \sqrt{\nfdisc(K)} .\] Let $I \subset \O_K$ be an ideal, then $\Sigma(I) \subset \Sigma(\O_K)$ is a sub\gls{latt}, and \[ \coVol(\Sigma(I)) = 2^{-s} \sqrt{\disc(I)} = 2^{-s} \N(I) \sqrt{\nfdisc(K)} .\] (where $\disc(I)$ is the discriminant of a generating tuple). $\mathcal{N} : \RR^d \to \RR$, \[ \mathcal{N}(x_1, \ldots, x_d) = \prod_{j = 1}^r |x_j| \prod_{j = 1}^s (|x_{r + j}|^2 + |x_{r + j + 1}|^2) .\] Note $\alpha \in K$, $\mathcal{N}(\Sigma(\alpha)) = |N(\alpha)|$. Need to prove that the lattive $\Sigma(\O_K)$ contains a non-zero element in the region: \[ \{x \in \RR^d : \mathcal{N}(x) \le \N(I) \sqrt{\nfdisc(K)}\} \] \begin{center} \includegraphics[width=0.6\linewidth]{images/bbbc85e288014802.png} \end{center} \subsubsection*{Geometry of numbers} Convex means that if $x, y \in S$ and $a \in (0, 1)$, then $ax + (1 - a)y \in S$. Symmetric to $0$ means that if $x \in S$, then $-x \in S$. \begin{flashcard}[minkowski-thm-lemma] \begin{lemma*} Let $\Lambda \subset \RR^d$ be a \gls{latt}, and let $S \subset \RR^d$ be a Borel set with $\Vol(S) > \coVol(\Lambda)$, \cloze{then there exists $x \neq y$ in $S$ such that $x - y \in \Lambda$.} \end{lemma*} \begin{proof} \cloze{Let $F$ be a \gls{fundom} for $\Lambda$. Note that $\RR^d$ is the disjoint union of \[ \{F + a : a \in \Lambda\} .\] Define: $S(a) = (S \cap (F + a)) - a$ for $a \in \Lambda$. Observe that $S(a) \subset F$. \[ \Vol(S) = \sum_{a \in \Lambda} \Vol(S \cap (F + a)) = \sum_{a \in \Lambda} \] % TODO % TODO Then $\exists a \neq b \in \Lambda$ and $x \in S(a) \cap S(b)$. Then $x + a \neq x + b \in S$, and $(x + a) - (x + b) = a - b \in \Lambda$.} \end{proof} \end{flashcard} \begin{flashcard}[minkowski-theorem] \begin{theorem*}[Minkowski's theorem] \label{mink_thm} \cloze{Let $\Lambda \in \RR^d$ be a \gls{latt}, and let $S \subset \RR^d$ be convex and symmetric to $0$. Suppose $\coVol(S) > 2^d \coVol(\Lambda)$. Then $\exists x \in \Lambda \cap S$ such that $x \neq 0$.} \end{theorem*} \begin{proof} \cloze{We apply the lemma for the set \[ \half S = \left\{ \half x : x \in S \right\} .\] Then $\Vol \left( \half S \right) = 2^{-d} \Vol(S)$. We get $x \neq y \in \half S$ such that $x - y \in \Lambda$. THen $2x, -2y \in S$, and by symmetry, $x - y = \half (2x) + \half (-2y) \in S$ by convexity.} \end{proof} \end{flashcard} \begin{example*}[non-example] $\Lambda = \ZZ^d$, $S = (-1, 1)^d$, $\coVol(S) = 2^d = 2^d \coVol(\Lambda)$, $S \cap \Lambda = \{0\}$. \end{example*} \vspace{-1em} Is $S$ is closed in addition, then $>$ can be replaced by $\ge$. \begin{flashcard}[mink-bound-1-proof] \begin{proof}[Proof of \nameref{mink_bound_1}] Consider $S = [-Y, Y]^d$ for some $Y \in \RR$. Then $\Vol(S) = 2^d Y^d$, and $|\mathcal{N}(x)| \le 2^s Y^d$ for $x \in S$. \nameref{mink_thm} gives $S \cap \Lambda \neq \{0\}$ if $\Vol(S) > 2^s \coVol(\Lambda)$. % TODO \end{proof} \end{flashcard}