%! TEX root = NF.tex % vim: tw=50 % 22/02/2024 10AM We will use the notation of Legendre symbols: \[ \left( \frac{m}{p} \right) = \begin{cases} 0 & \text{if $p \mid m$} \\ 1 & \text{if $\exists a \neq 0 \in \ZZ / p\ZZ$ with $a^2 \equiv m \pmod{p}$} \\ -1 & \text{otherwise} \end{cases} \] See \courseref[Number Theory]{NT} for some properties. \begin{flashcard}[legendre-prime-ideal-facts-thm] \begin{theorem*} Let $K = \QQ(\sqrt{m})$. Let $p \in \ZZ$ be prime and suppose $m$ is square-free, with $m \neq 0, 1$. Then: \cloze{ \begin{enumerate}[(1)] \item $p$ is ramified in $K$, that is $\exists P \subset \O_K$ such that $p\O_K = P^2$, if and only if $p$ is od and $p \mid m$, or $p$ is even and $m \equiv 2, 3 \pmod{4}$. \item $p$ is split in $K$, that is $\exists P_1, P_2 \subset \O_K$ such that $p\O_K = P_1 P_2$, if and only if $p$ is odd and $\legendre mp = 1$ or $p = 2$ and $m \equiv 1 \pmod{8}$. \item $p$ is inert, that is $p\O_K$ is a prime, if and only if $p$ is odd and $\legendre{m}{p} = -1$ or $p = 2$ and $m \equiv 5 \pmod{8}$. \end{enumerate} } \end{theorem*} \begin{proof} \cloze{If $p$ is odd or if $p = 2$ and $m \equiv 2, 3 \pmod{4}$, then we can apply \nameref{dedekind} with $g(x) = x^2 - m$, because $p \nmid [\O_K : \ZZ[\sqrt{m}]]$. If $p = 2$ and $m \equiv 1 \pmod{4}$, then we can apply \nameref{dedekind} with $g(x) = x^2 - m + \frac{1 - m}{4}$, which is the minimal polynomial of $\frac{1 + \sqrt{m}}{2}$.} \end{proof} \end{flashcard} \begin{flashcard}[class-group-defn] \begin{definition*}[Class group] \glssymboldefn{Cl}{Cl}{Cl} \cloze{Write $\mathcal{I}$ for the set of fractional ideals in $K$, which form an abelian group under multiplication. Let $\mathcal{P}$ denote the principal fractional ideals, which form a subgroup. The class group of $K$ is \[ \Cl(K) = \mathcal{I} / \mathcal{P} .\]} \end{definition*} \end{flashcard} \vspace{-1em} We have seen that for all $I \in \mathcal{I}$, there exists $a \in \ZZ$ such that $aI \subset \O_K$, that is $aI$ is an integral ideal. Thus each class in $\Cl(K)$ contains integral ideals. Alternatively, $\Cl(K)$ can be defined as equivalence classes of integral ideals under $I \sim J$, where $I \sim J$ if and only if $\exists \alpha \in K$ such that $I = \alpha J$. \begin{flashcard}[class-number-defn] \begin{definition*}[Class number] \glssymboldefn{clnum}{$h(K)$}{$h(K)$} \cloze{The \emph{class number} of $K$ is $h(K) = |\Cl(K)|$.} \end{definition*} \end{flashcard} \vspace{-1em} $h(K) = 1$ if and only if $\O_K$ is a PID (which we also showed before happens if and only if $\O_K$ is a UFD). \begin{theorem*} For all number fields, $h(K) < \infty$. \end{theorem*} \vspace{-1em} In order to prove this, we need a couple of results: \begin{flashcard}[minkowski-bound-thm] \begin{theorem*}[Minkowski's bound] \label{mink_bound_1} \cloze{Let $K$ be a \gls{nf}, let $I \subset \O_K$ be an ideal. Write $s$ for the number of pairs of complex embeddings of $K$. Then $\exists \alpha \in I$ such that \[ |N(\alpha)| \le \frac{d^1}{d^d} \left( \frac{4}{\pi} \right)^s \N(I) \sqrt{\nfdisc (K)} .\] Then by Stirling's Approximation, \[ \frac{d^1}{d^d} = (1 + \sigma(1)) \sqrt{2\pi d} e^{-d} .\]} \end{theorem*} \end{flashcard} \begin{flashcard}[minkowski-bound-2-thm] \begin{corollary*}[Minkowski's bound 2] \label{mink_bound_2} \cloze{Let $K$ be a \gls{nf}, and let $s$ be the number of pairs of complex embeddings of $K$. Then every ideal class in $\Cl(K)$ contains an integral ideal $I$ with \[ N(I) \le \frac{d^1}{d^d} \left( \frac{4}{\pi} \right)^s \sqrt{\nfdisc(K)} .\]} \end{corollary*} \begin{proof} \cloze{Let $I$ be an ideal. Let $J \subset \O_K$ be an ideal in the class of $I^{-1}$. We apply the \nameref{mink_bound_1} to $J$, so there is $\alpha \in J$ such that $N(\alpha) \le \cdots \N(J) \sqrt{\nfdisc(K)}$. Since $\alpha \in J$, $J \mid \langle \alpha \rangle$, so $\alpha J^{-1} \subset \O_K$ is an ideal in the class of $I$. Also, \[ \N(\alpha J^{-1}) = |N(\alpha)| \N(J)^{-1} \le \frac{d^1}{d^d} \left( \frac{4}{\pi} \right)^s \sqrt{\nfdisc(K)} .\]} \end{proof} \end{flashcard} This implies $h(K) < \infty$ because of: \begin{flashcard}[finitely-many-ideals-bounded-norm-lemma] \begin{lemma*} Let $X \in \RR_{> 0}$. Then there are only finitely many ideals in $\O_K$ of norm $\le X$. \end{lemma*} \begin{proof} \cloze{Each ideal of norm $\le X$ is the product of at most $\log_2(X)$ primes. The primes in those decompositions lie over rational primes $\le X$. For each such prime, there at most $d$ primes of $\O_K$ \glsref[lo]{lying over} it.} \end{proof} \end{flashcard} Computation of $\Cl(K)$: \begin{enumerate}[(1)] \item Calculate $X = \frac{d^1}{d^d} \left( \frac{4}{\pi} \right)^s \sqrt{\nfdisc(K)}$. For $K = \QQ(\sqrt{m})$, we get: \[ X = \begin{cases} \frac{\sqrt{m}}{2} & \text{if $m > 1$ and $m \equiv 1 \pmod 4$} \\ \sqrt{m} & \text{if $m > 1$ and $m \equiv 2, 3 \pmod{4}$} \\ \frac{2\sqrt{-m}}{\pi} & \text{if $m < 0$ and $m \equiv 1 \pmod 4$} \\ \frac{4\sqrt{-m}}{\pi} & \text{if $m < 0$ and $m \equiv 2, 3 \pmod 4$} \end{cases} \] \item List all rational primes $\le X$. \item Split all of these rational primes in $\O_K$, and make a list of all prime ideals with norm $\le X$, say $P_1, \ldots, P_k$. \item Figure out when $P_1^{m_1} \cdots P_k^{m_k}$ is principal for some $m_1, \ldots, m_k \in \ZZ$. \end{enumerate} \begin{flashcard}[minkowski-bound-3-coro] \begin{corollary*}[Minkowski bound 3] \label{mink_bound_3} \cloze{\[ \nfdisc(K) \ge \frac{d^{2d}}{(d^1)^2} \left( \frac{\pi}{4} \right)^{2s} .\] This follows from $\N(I) \ge 1$ and \nameref{mink_bound_2}.} \end{corollary*} \end{flashcard}