%! TEX root = NF.tex % vim: tw=50 % 20/02/2024 10AM \begin{flashcard}[dedekind-pf-2] \begin{proposition*} \prompt{Second step of \nameref{dedekind}:} \cloze{$P\O_L / Q_j$ is a factor of $(\O_K / P)[X] / \langle \ol{g}_j \rangle$ (``factor'' is another way of saying ``quotient of'').} \end{proposition*} \fcscrap{ \vspace{-1em} Two possible factors (since $\ol{g}_j$ is irreducible, so $(\O_K / P)[X] / \langle \ol{g}_j \rangle$ is a field): $P\O_L / Q_j \cong \{0\}$, so $Q_j = P\O_L$, or $P\O_L / Q_j \cong (\O_K / P)[X] / \langle \ol{g}_j \rangle$, in which case $Q_j$ is a prime and $\inertdeg(Q_j \mid P) = \deg g_j$. For $A \subset R$, we use $\langle A \rangle_R$ to denote the ideal generated by $A$ in $R$. \begin{lemma*} Let $R_1 \stackrel{\varphi_1}{\to} R_2 \stackrel{\varphi_2}{\to} R_3$ be surjective homomorphisms of rings. Let $A \subset R_1$ such that $\langle \varphi_1(A) \rangle_{R_2} = \Ker(\varphi_2)$. Then: \[ \Ker(\varphi_2 \circ \varphi_1) = \langle A \rangle_{R_1} + \Ker(\varphi_1) .\] \end{lemma*} \vspace{-1em} Key point is to show: \[ \varphi_1(\langle A \rangle_{R_1}) = \langle \varphi_1(A) \rangle_{R_2} .\] This uses the surjectivity of $\varphi_1$. } \begin{proof}[Proof of Proposition] \cloze{First we prove \[ (\O_K / \ul{P})[X] / \langle \ol{g}_i \rangle \cong \O_K[\alpha] / \langle \ul{P}, g_j(\alpha) \rangle \] \[ \begin{tikzcd}[ampersand replacement=\&] \& (\O_K / \ul{P})[X] \ar[r, "\varphi_2"] \& (\O_K / \ul{P})[X] / \langle \ol{g}_j \rangle \\ \O_K[X] \ar[ur, "\varphi_1"] \ar[dr, "\chi_1"] \\ \& \O_K[\alpha] \ar[r, "\chi_2"] \& \O_K[\alpha] / \langle \ul{P}, g_j(\alpha) \rangle \end{tikzcd} \] $\varphi_2 \circ \varphi_1$: Let $A = \{g_j\}$. Then $\varphi_1(g_j) = \ol{g}_j$ generates $\langle \ol{g}_j \rangle = \Ker(\varphi_2)$. \[ \Ker(\varphi_2 \circ \varphi_1) = \langle g_j \rangle \O_K[X] + P\O_K[X] .\] $\chi_2 \circ \chi_1$: Let $A = \ul{P} \cup \{g_j\}$. $\chi_1(A) = \ul{P} \cup \{g_j(\alpha)\}$ generates $\Ker(\chi_2)$. \[ \Ker(\chi_2 \circ \chi_1) = \ul{P} \O_K[X] + \langle g_j \rangle \O_K[X] + \langle g \rangle \O_K[X] .\] Noet $g \equiv g_j \circ h \pmod{\ul{P}}$ (where $h$ is the product of the other $g_i$'s). \[ \begin{cases} g_j h \in \langle g_j \rangle_{\O_K[X]} \\ g - g_j h \in \ul{P} \O_K[X] \end{cases} \implies g \in \ul{P} \O_K[X] + \langle g_j \rangle_{\O_K[X]} \] So the RHS of the two earlier equations are equal, so $\varphi_2 \circ \varphi_1$ and $\chi_2 \circ \chi_1$ have the same kernel. Observe $Q_j \cap \O_K[\alpha] \supset \langle \ul{P}, g_j(\alpha) \rangle_{\O_K[\alpha]}$. $\O_K[\alpha] / Q_j \cap \O_K[\alpha]$ is a quotient of $\O_K[\alpha] / \langle \ul{P}, g_j(\alpha) \rangle$. Enough to show that \[ \O_L / Q_j \cong \O_K[\alpha] / (Q_j \cap \O_K[\alpha]) \] $\O_L \stackrel{\varphi}{\to} \O_L / Q_j$, $\varphi(\O_K[\alpha]) \cong \O_K[\alpha] / (Q_j \cap \O_K[\alpha])$. Enough to show: $\O_K[\alpha] + Q_j = \O_L$. Look at $\O_L / (\O_K[\alpha] + Q_j)$ in the category of abelian groups. This is a quotient of both $\O_L / \O_K[\alpha]$ and $\O_L / Q_j$. \[ [\O_L : \O_K[\alpha] + Q_j] \mid \gcd(\ub{[\O_L : \O_K[\alpha]]}_{p \nmid}, \ub{[\O_L : Q_j]}_{= N(Q_j)}) = 1 \] where $N(Q_j)$ is a power of $p$ because $Q_j$ lies above $\ul{P}$ that lies above $p$.} \end{proof} \end{flashcard} \begin{flashcard}[Qi-plus-Qj-equals-OL-prop] \begin{proposition*} \prompt{Third step of \nameref{dedekind}:} If $i \neq j$, then $Q_i + Q_j = \O_L$. \end{proposition*} \begin{proof} \cloze{$\ol{g}_i, \ol{g}_j$ are two distinct irreducible polynomials in $(\O_K / \ul{P}) [X]$, a Euclidean domain. By Euclidean algorithm, there exists $\ol{h}_i, \ol{h}_j \in (\O_K / \ul{P})[X]$ such that \[ \ol{h}_i \ol{g}_i + \ol{h}_j \ol{g}_j = 1 .\] Let $h_i, h_j$ be lifts of $h_i$ and $h_j$ in $\O_K[X]$. \[ h_i g_i + h_j g_j \equiv 1 \pmod{\ul{P}} .\] There exists $f \in \ul{P} \O_K[X]$ such that \[ \ub{h_i(\alpha) g_i(\alpha)}_{\in Q_i} + \ub{h_j(\alpha) g_j(\alpha)}_{\in Q_j} + \ub{f(x)}_{\in \ul{P}} = 1 \] So $1 \in Q_i + Q_j$, so $Q_i + Q_j = \O_L$.} \end{proof} \end{flashcard} \begin{flashcard}[proof-of-dedekind] \begin{proof}[Proof of \nameref{dedekind}] Recall: $P\O_L\ supset Q_1^{e_1} \cdots Q_r^{e_r}$. % TODO \end{proof} \end{flashcard}