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Start of

lecture 1
1 Introduction

If L ⊃ K are fields, then L is an extension of K. Notation L/K. We can think of L as a
vector space over K. The dimension of L/K is called the degree of the field extension,
and is written as [L : K].

Definition (Number field). A number field is a subfield K of C with [K : Q] <∞.

Example.

(1) Q.

(2) Let α ∈ C be algebraic, i.e. a root of a polynomial with integer coefficients. Then
Q(α) (this notation means the smallest subfield of C containing α) is a number
field. [Q(α) : Q] = deg fα, where fα is the unique monic minimal polynomial of
α over Q. By the Primitive Element Theorem (see Galois Theory), all number
fields are of this form.

(3) Quadratic fields: K with [K : Q] = 2. K = Q(
√
m) where m ∈ Z, m 6= 0,±1

and square-free.

(4) Cyclotomic fields. Let n ∈ Z≥3. Let θn = e2πi/n. This is an n-th root of unity,
i.e. θnn = 1. Then K = Q(θn) is a number field, with [Q(θn) : Q] = ϕ(n), where
ϕ(n) is the number of residue classes modulo n that are coprime to n.

Why study Number Fields?

Consider Fermat equation:

xn + yn = zn, x, y, z ∈ Z.

Consider the n = 2 case. We are interseted in primitive solutions (solutions with
gcd(x, y, z) = 1). Furthermore we assume x, y, z ≥ 0.

Assume 2 - y. Note that (z − x)(z + x) = z2 − x2 = y2.

Claim: gcd(z − x, z + x) = 1. Indeed let p | z − x, z + x. Then p | 2z, 2x, y2. But
gcd(2x, 2z, y2) = 1 (since we assumed 2 - y and gcd(x, y, z) = 1), so no such p exists.

y2 has all prime factors with even multiplicities, and these factors must go to either
(z − x) or (z + x) with the multiplicity they occur in y2. Conclusion: z − x = n2,
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z + x = m2 for some 0 ≤ n ≤ m ∈ Z and coprime and odd. We now have:

x =
m2 − n2

2
, z =

m2 + n2

2
, y = mn

All solutions must be of this form. Easy to check that these are all solutions. More
customary to write

x = 2mn, y = m2 − n2, z = m2 + n2,

m > n, gcd(m,n) = 1, and exactly one of them is even.

Fermat claimed: No solutions for n ≥ 3 and x, y, z ∈ Z>0. First step is to factorize the
equation. For n = 2, we used X2−1 = (X−1)(X+1). For general n, we have Xn−1 =∏n−1

j=0 (X − θjn). Assume n is odd, then consider X → −X: Xn + 1 =
∏n−1

j=0 (X + θjn).
Now substitute X ← x

y to get

zn = xn + yn =
n−1∏
j=0

(x+ yθjn).

Next step: show that (x+ yθjn) is an n-th power.

Issues:

• Unique factorisation may fail. In fact, Z[θn] is not a UFD for any prime n ≥ 23.

• Even if it is a UFD, if α has all prime factors with multiplicity divisible by n, we
can conclude only that α = uβn for some β ∈ Z[θn] and some unit u ∈ Z[θn]×
(reminder: u ∈ R is a unit if there exists u−1 ∈ R such that uu−1 = 1, and R×

denotes the set of units in R).

Theorem (Kummer 1850). If p is a regular prime (not defined here), then

xp + yp = zp

has no solutions with x, y, z ∈ Z≥1.

Aims of the course:

• Ring of integers in number fields

• Unique factorisation of ideals

• Units

• Fermat equation: prove Kummer’s Theorem in the case p - xyz
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1.1 Ring of integers

Let α ∈ C be algebraic. Then there is a unique monic irreducible polynomial f ∈ Q[X]
of minimal degree such that f(α) = 0. This is called the minimal polynomial.

Definition (Algebraic Integer). α ∈ C is an algebraic integer if it has minimal
polynomial fα ∈ Z[X].

Remark. If α is a root of a monic polynomial f ∈ Z[X], then α is an algebraic
integer. Indeed, then we can write f = fα · h with fα the minimal polynomial of α,
and h ∈ Q[X] monic. By Gauss’s Lemma (see GRM), both fα, h ∈ Z[X].

Theorem. Algebraic integers form a ring.

Notation. The ring of algebraic integers is denoted by O. If K is a number field,
then OK = O ∩K.

Example. If K = Q, OK = Z. Let a
b ∈ Q. fα = x− a

b . So a
b ∈ OK ⇐⇒ a

b ∈ Z.

Example. Quadratic fields: Let K = Q(
√
m), where m 6= 0, 1 ∈ Z is square-free.

Then

OK =

{
a+ b

√
m a, b ∈ Z if m ≡ 2, 3 (mod 4)

a+ b
(
1+

√
m

2

)
a, b ∈ Z if m ≡ 1 (mod 4)

All elements of K are of the form α = a+ b
√
m with a, b ∈ Q. α ∈ OK ⇐⇒ 2a ∈

Z, a2 − b2m ∈ Z.

fα = (x− (a+ b
√
m))(x− (a− b

√
m)) = x2 − 2ax+ a2 − b2m.
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Example. n ∈ Z≥3. K = Q(e2πi/n︸ ︷︷ ︸
θn

). OK = Z[θn] = Z ⊕ θnZ ⊕ · · · ⊕ θ
ϕ(n)−1
n Z.

Here, the direct sum notation (⊕) means that each element of the ring OK can be
decomposed in a unique way, as opposed to if we used sum notation (+), where
we would just assert that every element can be written in some way (but possibly
multiple).

Why not work with Z[α] ⊂ Q[α]? Only OK works.

Proposition. Let α ∈ C. Then the following are equivalent:

(i) α ∈ O.

(ii) Z[α] is a finitely generated Z-module, that is

Z[α] = β1Z+ β2Z+ · · ·+ βnZ

for some β1, . . . , βn ∈ Z[α].

(iii) There is a finitely generated Z-module M ⊂ C such that αM ⊂M .

Proof.

(1) =⇒ (2) We show that
Z[α] = Z+ αZ+ · · ·+ Zαd−1Z︸ ︷︷ ︸

M

where d = deg fα. Enough to show that αk ∈M for all n ∈ Z≥0. Observe
that for n ≥ d:

αn = (αd − fα(α))α
n−d︸ ︷︷ ︸

∈αn−1Z+···+Z

.

Using this and induction, the claim follows.

(2) =⇒ (3) Trivial.

(3) =⇒ (1) Let M = β1Z + · · · + βkZ be finitely generated, and suppose αM ⊂ M .
We exhibit a monic polynomial f ∈ Z[X] such that f(α) = 0. There are
mij ∈ Z such that

αβi = mi1β1 + · · ·+minβn ∀i = 1, . . . , n
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Let A be the matrix with entries mii. Then

A

β1
...
βn

 =

αβ1
...

αβn


α is an eigenvalue of A. Then f = det(xI − A) ∈ Z[X] is monic, and has
the property that f(α) = 0.

Proof that algebraic integers form a ring. Let α, β ∈ O. We want to show that α − β
and αβ ∈ O. Let M = Z[α, β]. Clearly (α−β)M ⊂M and (αβ)M ⊂M . We show that
M is a finitely generated Z-module. Specifically

M =

n∑
i=1

m∑
j=1

αiβjZ,

where α1, . . . , αn, β1, . . . , βm are generators for Z[α] and Z[β] respectively. α, β ∈ M ,
and M is a ring.

Additive structure of Ok

Theorem. Let K be a number field. Then ∃β1, . . . , βd ∈ OK such that

OK = β1Z⊕ · · · ⊕ βdZ

with d = [K : Q].

Definition. Such a tuple of β’s is called an integral basis.

Suppose that we know that OK is a finitely generated Z-module. By the structure
theorem,

OK
∼= Zr ⊕����Z/m1Z⊕ · · · ⊕����Z/msZ

Start of

lecture 3 Let K be a number field, OK the ring of integers. Let [K : Q] = d.

Aim: ∃ an integral basis, that is α1, . . . , αd ∈ OK such that

OK = α1Z⊕ · · · ⊕ αdZ
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If M ⊂ K is a finitely generated Z-module, then

M = α1Z⊕ · · · ⊕ αrZ

Observe r = dimQ spanQ(M):

• α1, . . . , αr is linearly independent over Q.

• spanQ(M) = spanQ(α1, . . . , αr).

Observe spanQOK = K:

• If α ∈ K, then aα ∈ OK for suitable a.

Discriminant of tuple

Recall Norm and Trace (from Galois Theory). Let L/K be a finite extension of fields.
For α ∈ L, we can associate mα : x 7→ αx on L considered a vector space over K. The
norm is NL/K(α) = det(mα) ∈ K. The trace if TrL/K(α) = Tr(mα) ∈ K. Recall the
following properties:

• If α ∈ K, TrL/K(α) = [L : K]α, NL/K(α) = α[L:K].

• α, β ∈ L: TrL/K(α+ β) = TrL/K(α) + TrL/K(β), NL/K(αβ) = NL/K(α)NL/K(β).

• Let M/L/K: TrM/K(α) = TrL/K(TrM/L(α)), similarly with norms.

Fix K. Let d = [K : Q]. Then there exists d distinct embeddings σ1, . . . , σd : K → C (if
K = Q(α), and f is the minimal polynomial of α, then σ1(α), . . . , σd(α) are the roots of
f).

We have:
NK/Q(α) = σ1(α) · · ·σd(α)

TrK/Q(α) = σ1(α) + · · ·+ σd(α)

If α ∈ OK , then NK/Q(α),TrK/Q(α) ∈ Z. If α is such that K = Q(α), and

f(X) = Xd + ad−1x
d−1 + · · ·+ a0

is its minimal polynomial, then

NK/Q(α) = (−1)da0, TrK/Q(α) = −ad−1.

Fix K. Write N = NK/Q, Tr = TrK/Q.
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Definition (Discriminant).Let σ1, . . . , σd be the embeddings K → C. Let α1, . . . , αd ∈
K. Then we write

disc(α1, . . . , αd) = det(σi(αj)).

Note that det(σi(αj)) denotes the determinant of the matrix whose ij-th entry is
σi(αj).

Example.
disc(1, α, α2, . . . , αd−1) =

∏
1≤i<j≤d

(σi(α)− σj(α))
2

If K = Q(α) and f is the minimal polynomial, then this equals

(−1)
d(d−1)

2 N(f ′(α)).

Note.
Z[α] = Z+ αZ+ · · ·+ αd−1Z

for α ∈ OK .

Lemma.
disc(α1, . . . , αd) = det(Tr(αiαj))

Proof. Write [xij ]ij for the d× d matrix with entries xij . Note

[σj(αi)]ij [σj(αk)]jk =

 d∑
j=1

σi(αiαj)

 = [Tr(αiαk)]ik

Determinants are multiplicative and invariant under transpose.

Lemma.

disc(α1, . . . , αd) = 0 ⇐⇒ α1, . . . , αd are linearly dependent over Q

Proof. If α1, . . . , αd are linearly dependent, then the rows of [Tr(αiαj)] are also linearly
dependent. Then det = 0, so disc = 0.
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For the converse, suppose for the contrary that α1, . . . , αd are linearly independent over
Q, and for sake of contradiction, assume disc = 0, so disc(Tr(αiαj)) = 0. Then there
exists some a1, . . . , ad not all 0 such that

d∑
i=1

aiTr(αiαj) = 0 ∀j

This is equivalent to (by additivity of Tr):

Tr

((∑
i

aiαi

)
αj

)
= 0 ∀j

By linear independence of α1, . . . , αd,

•
∑

i aiαi 6= 0.

• ∃b1, . . . , bd such that β−1 =
∑

j bjαj .

Then ∑
j

bj Tr(β · αj) = 0

hence
Tr(β · β−1) = Tr(1) = 0

which is a contradiction, since Tr(1) = d 6= 0.

Corollary. α1, . . . , αd are linearly independent over Q if and only if the complex
vectors (σ1(αj), . . . , σd(αj))

> ∈ Cd for j = 1, . . . , d are linearly independent over C.

Start of

lecture 4
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Definition. Let K be a number field. Recall that we have d embeddings σ1, . . . , σd :
K → C, where d = [K : Q]. We write r for the number of σj such that σj(K) ⊂ R.
Furthermore, we order the σi such that σ1, . . . , σr are precisely the real embeddings.

Write s = d−r
2 . There are s pairs of complex conjugate embeddings. Denote them

by τ1, τ1, . . . , τs, τs (relabelling of σr+1, . . . , σd).

Define Σ : K → Rd by

Σ(α) =



σ1(α)
...

σr(α)
Re(τ1(α))
Im(τ1(α))

...
Re(τs(α))
Im(τs(α))


This is Q-linear.

Lemma. Let α1, . . . , αd ∈ K. Then

disc(α1, . . . , αd) = (−4)s det(Σ(α1), . . . ,Σ(αd))
2

Proof. The matrix [σi(αj)]ij has the following rows somewhere:

det(σi(αj)) = ±(−2i)s det(Σ(α1), . . . ,Σ(αd))). Squaring this we get the claim.
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Definition (Lattice). A lattice in Rd is an additive subgroup of the form

Λ = v1Z⊕ · · · ⊕ vdZ

where v1, . . . , vd ∈ Rd.

Definition (Fundamental domain). A fundamental domain is a Borel set which
contains exactly one point from each coset of some lattice Λ.

See Probability & Measure for a definition of Borel sets. The rough idea is that
Borel sets are the sets for which we have a well-defined notion of volume.

Example. Fundamental parallelepiped:

[0, 1) · v1 + · · ·+ [0, 1) · vd

Lemma. All fundamental domain have the same volume.

Proof. Out of the scope of this course (but should be fairly simple if you have studied
Probability & Measure).

Notation. We use coVol(Λ) to denote the volume of any fundamental domain of Λ
(this is well-defined by the above lemma).

Observe:
Vol([0, 1)v1 + · · ·+ [0, 1)vd) = | det(v1, . . . , vd)|

disc(α1, . . . , αd) = (−4)s coVol(Σ(α1Z+ · · ·+Σ(αd)Z)2.

Definition (Discriminant of a module). The discriminant of a module of rank d is
the discriminant of any basis of it (this is well-defined by part (3) of the following
proposition).
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Proposition. Let α1, . . . , αd, β1, . . . , βd ∈ K which are linearly independent over
Q. Let A ∈ Qd×d such that

(β1, . . . , βd)
> = A(α1, . . . , αd)

>.

(1) Then
disc(β1, . . . , βd) = det(A)2 disc(α1, . . . , αd).

(2) If β1, . . . , βd ∈ Zα1 + · · ·+ Zαd, then

|disc(β1, . . . , βd)| ≥ | disc(α1, . . . , αd)|.

(3) If the α’s and β’s generate the same module, then the discriminants are the
same.

Proof.
[σj(βi)]ij = A[σj(αi)]

First claim (1) follows by the definition of discriminant and the properties of det.

For (2), there exists A ∈ Zd×d such that (β1, . . . , βd)> = A(α1, . . . , αd)
>, and | det(A)| ≥

1 since det(A) 6= 0.

For (3), we already have ≥ by (2). For ≤, we can exchange the α’s and β’s.

Proposition. Let M1 ⊂M2 be two modules of rank d in K. Then

disc(M1) = |M2/M1|2 disc(M2)

Recall from GRM:

Theorem. Let M1 ⊂ M2 be two free Z-modules of rank d. Then M2 has a ba-
sis α1, . . . , αd and there are α1, . . . , αd ∈ Z such that α1 | α2 | · · · | αd and
a1α1, . . . , adαd is a basis for M .

Start of

lecture 5 Theorem. Let K be a number field. Then α1, . . . , αd ∈ OK is integral basis if and
only if | disc(α1, . . . , αd)| is minimal among all Q-linear indepdendent tuples.
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Proof. Let α1, . . . , αd be such a tuple. Let β ∈ OK . We need to prove that β ∈ M =
α1Z+ · · ·+ αdZ. Then

disc(M + βZ) = |M + βZ/M |−2 disc(M) =⇒ |M + βZ/M | = 1,

so β ∈M .

Definition (Discriminant of a number field). The discriminant of a number field
is the discriminant of any integral basis.

Example. Quadratic fields: K = Q(
√
m), m square-free, m 6= 0. Two cases:

(1) m ≡ 2, 2 (mod 4): OK = Z+
√
mZ,

disc(K) =

∣∣∣∣1 √
m

1 −
√
m

∣∣∣∣2 = 4m

(2) m ≡ 1 (mod 4): OK = Z+ 1+
√
m

2 Z,

disc(K) =

∣∣∣∣∣1 1+
√
m

2

1 1−
√
m

2

∣∣∣∣∣
2

= m

Proposition. Let α1, . . . , αd ∈ OK be Q-linearly independent. Then ∃q ∈ Z≥0

such that q2 disc(α1, . . . , αd) and all β ∈ OK can be written as

β =
a1α1 + · · ·+ adαd

q

with a1, . . . , ad ∈ Z.

Proof. Set

q =

(
disc(α1, . . . , αd)

disc(K)

)1/2

Then
| OK/α1Z⊕ · · · ⊕ αdZ︸ ︷︷ ︸

=M

| = q

β ∈ OK , qβ = 0 in M , so qβ ∈ α1Z⊕ · · · ⊕ αdZ.
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Unique factorisation of ideals

Consider K = Q(
√
−5), OK = Z[

√
−5]. We have

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

In order to have unique factorisation, would have to have these elements split into smaller
element. Say 2 = π1π2. N(2) = 4, N(1+

√
−5) = 1+5 = 6. We would need N(π1) = ±2.

No such π1, π2.

Definition (Ideal). A set I ⊂ OK is an ideal if

α, β ∈ I =⇒ α+ β ∈ I

α ∈ I, β ∈ OK =⇒ αβ ∈ I

Example. The principal ideal generated by β ∈ OK is

{β · α : α ∈ OK} = βOK = 〈β〉 = 〈β〉OK

Observe that 〈β〉 = 〈α〉 if and only if β = uα for some unit u ∈ O×
K .

Definition (Product of ideals). Let I, J ⊂ OK be two ideals. We define

IJ = {α1β1 + · · ·+ αkβk : α1, . . . , αk ∈ I, β1, . . . , βk ∈ J}.

Remark.

• The set of ideals with this multiplication is a semi-group.

• α 7→ 〈α〉 is a homomorphism.

Definition (Prime ideal). An ideal P ( OK is a prime ideal if the following holds:
whenever αβ ∈ P for some α, β ∈ OK , then at least one of α, β is in P .

Fact: This is equivalent to OK/P being an integral domain (recall that an integral
domain is a commutative, unital ring without 0-divisors).

Fact: 〈a〉 is a prime ideal ⇐⇒ α is a prime in OK .
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Theorem. Let K be a number field. Then all non-zero ideals in OK are a product
of non-zero prime ideals, and this factorisation is unique up to the order of the
factors.

Remark. Addition on ideals can be defined as

I + J = {α+ β : α ∈ I, β ∈ J}

But this does not make the set of ideals a ring. Also, 〈α〉+ 〈β〉 6= 〈α+β〉 in general.

Lemma.

(1) All ideals in OK are finitely generated. That is, they are of the form β1OK +
· · ·+ βkOK for some β1, . . . , βk ∈ OK .

(2) If I1 ⊂ I2 ⊂ I3 ⊂ · · · is a chain of ideals, then there exists k such that Ik =
Ik+1 = Ik+2 = · · · .

(3) Any collection of ideals contains a maximal one with respect to ⊂.

This is called Noetherian property.

Proof.

(1) I ⊂ OK is finitely generated as a Z-module, which is even stronger than (1).

(2) I =
⋃∞

i=1 Ij is an ideal, so I = β1OK + · · ·+ βkOK . Then there exists m such that
β1, . . . , βk ∈ Im. Then I = Im = Im+1 = · · · .

(3) Suppose not. Then there is an infinite chain of ideals

I1 ( I2 ( I3 ( · · ·

contradicting (2).

Start of

lecture 6 Remarks:

• OK is not a prime ideal.

• {0} is not an integral domain (note that {0} is a ring, with 1 = 0).
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• 〈0〉 ⊂ R is a prime ideal if and only if R is an integral domain.

• I ⊂ OK is a prime if it is a non-zero prime ideal.

Definition (Maximal ideal). An ideal I ( OK is maximal if the only ideals J with
I ⊂ J ⊂ OK are I and OK .

Fact: I is maximal if and only if OK/I is a field.

Lemma. In OK , primes and maximal ideals are the same.

Proof. First we prove that OK/I is finite for all non-zero ideals. Enough to show that
the rank of I is d = [K : Q] as a Z-module. Take an integral basis α1, . . . , αd ∈ OK . Let
0 6= β ∈ I. Then βα1, . . . , βαd ∈ I is linearly independent over Q. Then rank(I) = d.
Now the lemma follows by the fact that finite integral domains are fields. Hint: Show
that OK/I is equal to its field of fractions.

Lemma. Let α ∈ K. Suppose that there is a finitely generated OK-module M ⊂ K
such that αM ⊂M . Then α ∈ OK .

Remark. Integral domains that satisfy this property with the field of fractions
playing the role of K are called integrally closed.

Proof. M is also finitely generated as a Z-module, because OK is finitely generated as
a Z-module. Then α is an algebraic integer, hence α ∈ OK .

An integral domain satisfying the conclusions of all 3 lemmas is called a Dedekind do-
main.

Let I be a non-zero ideal. By the Noetherian property, there exists a maximal ideal P
such that P ⊃ I. Then P is a prime. It would be great if we had:

I ⊃ J ⇐⇒ ∃I2 ideal such that II2 = J.

Observe that:

17



• This holds for principal ideals:

〈β〉 ⊂ 〈α〉 ⇐⇒ β ∈ 〈α〉
⇐⇒ β = γα for some γ

⇐⇒ 〈β〉 = 〈γ〉〈α〉

• The ⇐ direction is trivial. Indeed, if α ∈ I, β ∈ I2, then αβ ∈ I. The collection of
all possible such αβ generate J , so indeed J ⊂ I.

If this was true, we could write I = PI1 for some ideal I1.

Definition (Fractional Ideal). A fractional ideal is a finitely generatedOK-submodule
of K.

Note. We extend the definition of multiplication of ideals to get multiplication of
fractional ideals.

Lemma. If I ⊂ K is a fractional ideal, then ∃a ∈ Z such that a · I is an ideal.
Conversely, if I ⊂ OK is an ideal, then α · I is a fractional ideal for all α ∈ K.

Proof. Let α1, . . . , αk generate I as an OK-module. Write them as Q-linear combinations
of an integral basis. Take a to be a common denominator of all the coefficients. Then
aαj ∈ OK . Hence aI ⊂ OK . Also, aI is an OK-module. Then aI is an ideal.

Conversely, if I is an ideal, then it is a finitely generated OK-module, then so is αI.

Proposition. Let P be a prime. Then there exists a fractional ideal P ′ such that
PP ′ = 〈1〉.

Proof. Let P ′ = {α ∈ K | αP ⊂ OK}. This is an OK-module. Moreover, βP ′ ⊂ OK

for any 0 6= β ∈ P . Then βP ′ is finitely generated as a Z-module. Then P ′ is also
finitely generated, so P ′ is a fractional ideal. Observe P ′P ⊂ OK , hence it is an ideal
(note that fractional ideals contained in OK are always ideals). Also by OK ⊂ P ′,
PP ′ ⊃ POK = P . OK ⊃ P ′P ⊃ P , so P ′P is OK or P . To exclude the second
possibility, we show that there exists α ∈ P ′ \ OK . Then we cannot have αP ⊂ P ,
because that would imply α ∈ OK , by OK being integrally closed.
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Let 0 6= β ∈ P . Let k be the smallest number such that there exists Q1, . . . , Qk primes
with Q1, . . . , Qk ⊂ 〈β〉 (see next lemma for existence of k). Note that Q1, . . . , Qk ⊂
P . Since P is a prime ideal, there exists j with Qj ⊂ P (we use the fact that
IJ ⊂ P =⇒ I ⊂ P or J ⊂ P ). But Qj is a maximal ideal, so Qj = P . Let
γ ∈ Q1 · · ·Qj−1Qj+1 · · ·Qk \ 〈β〉. Such a γ exists by the minimality of k. Then
γ /∈ 〈β〉 =⇒ γ

β /∈ OK . Then Pγ ∈ 〈β〉 =⇒ γ
βP ⊂ OK . So we can take α = γ

β .

Start of

lecture 7 Lemma. Let 0 6= I ⊂ OK be an ideal. Then there are primes P1, . . . , Pk ⊂ OK

such that I ⊃ P1P2 · · ·Pk.

Proof. Trivial if I is a prime. Suppose that the lemma is false. Let I be maximal among
the ideals for which it fails (since OK is Noetherian). Then I is not a prime. Then there
exists α, β ∈ OK \ I such that αβ ∈ I. Then

(I + 〈α〉)︸ ︷︷ ︸
)I

(I + 〈β〉)︸ ︷︷ ︸
)I

⊂ I

By hypothesis, there exists Q1, . . . , Ql, R1, . . . , Rm ⊂ OK primes such that

Q1 · · ·Ql ⊆ I + 〈α〉 and R1 · · ·Rm ⊆ I + 〈β〉.

Multiplying these together, we see that the lemma holds for I also.

Theorem. Non-zero ideals in OK are products of primes in a unique way up to the
order of the factors.

Proof. Let i be a non-zero ideal. Let P1 ( OK be an ideal that is maximal among those
that contain I. Then P1 is a maximal ideal, hence prime. Let I1 = I · P−1 (P−1 is
notation for P ′ from the Proposition about PP ′ = 〈1〉). Observe that I1P = I and
I1 ⊂ OK is an ideal. This is because I1 = I · P−1 ⊂ PP−1 = 〈1〉 = OK . Also, I1 ) I,
for otherwise we would have αI ⊂ I for all α ∈ P−1, and this would imply P ′ ⊂ OK .
Keep going with this, and we get sequences P1, P2, . . . and I1 ( I2 ( I3 ( · · · such that
Ij−1 = IjPj . This must terminate, so Ik = OK for some k. Then

I = P1I1 = P1P2I2 = · · · = P1P2 · · ·PkIk = P1 · · ·Pk.

We now show that P1 · · ·Pk = Q1 · · ·Ql implies k = l and Pj = Qσ(j) for some permuta-
tion σ. It is enough to show that P1 = Qj for some j, because then the claim follows by
induction on k + l. Observe that P1 ⊃ P1 · · ·Pk = Q1 · · ·Ql. By the argument for the
proof of the lemma, P1 must be equal to one of the Qj ’s.
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Corollary. For all non-zero fractional ideals I ⊂ K, there exists I−1 ⊆ K a frac-
tional ideal such that II−1 = 〈1〉. That is, fractional ideals form a group.

Proof. If I ⊂ OK is an ideal, then I = P1 · · ·Pk for some primes. We can use the lemma
and take: I−1 = P−1

1 · · ·P−1
k . In the general case, I = J1 · · · J−1

2 , where J1, J2 ⊆ OK .
In fact we can take J2 = 〈a〉 for some a ∈ Z. Then use the special case, and take
I−1 = J−1J2.

Corollary. Let 0 6= I, J ⊂ OK be ideals. Then

I ⊃ J ⇐⇒ ∃I2 ⊂ OK such that II2 = J.

Proof. Take I2 = J · I−1. We need to show that J · I−1 ⊆ OK . Let α ∈ J · I−1. Then
αI ⊂ J ⊂ I, so by integrally closedness, α ∈ OK as needed.

Corollary. OK is a UFD if and only if it is a PID.

Proof. PID =⇒ UFD holds in general.

Suppose it is a UFD. All elements α ∈ OK are the product of primes. All principal
ideals are products of principal prime ideals. Let I be an ideal, and let β ∈ I. 〈β〉 ⊂
I =⇒ I | 〈β〉. So all prime factors of I are prime factors of 〈β〉, hence principal.

Start of

lecture 8 Recall J | I ⇐⇒ J ⊃ I, by a Corollary from last time.

Definition (gcd and lcm). gcd(I1, I2) is the smallest ideal J such that J | I1, J | I2.

lcm(I1, I2) is the largest ideal J such that I1, I2 | J .

Fact:

gcd(I1, I2) = I1 + I2 = {α+ β : α ∈ I, β ∈ J}
lcm(I1, I2) = I1 ∩ I2
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Norm of ideals

Definition (Norm of an ideal). Let I ⊂ OK be an ideal. Then N(I) = |OK/I|.

Recall: If I 6= 〈0〉, then N(I) <∞. If α1, . . . , αd generate I as a free Z-module, then

N(I) =

(
disc(α1, . . . , αd)

disc(K)

)1/2

Proposition. Let I, J ⊂ OK be non-zero ideals. Then

N(IJ) = N(I) ·N(J).

Proof. Enough to prove when J is a prime. This special case implies that

N(P1 · · ·Pk) = N(P1) · · ·N(Pk)

for primes P1, . . . , Pk. Apply this to the factorisation of I, J, IJ to deduce the general
case.

Now let J be a prime. Observe OK/I ∼= (OK/IJ)/(I/IJ). So

N(I) = N(IJ)/|I/IJ |.

So it is enough to show N(J) = |I/IJ |.

Let α1, . . . , αN(J) be representatives for the cosets in OK/J . Let β ∈ I \ IJ .

Claim: βα1, . . . , βαN(J) are representatives for I/IJ .

Proof:

(1) Show ∀γ ∈ I, ∃αj such that γ ≡ βαj (mod IJ). Enough to show that ∃α ∈ OK

such that γ ≡ βα (mod IJ), because ∃αj ≡ α (mod J). Need to find α such that
γ−βα ∈ IJ . This is the same as showing that γ ∈ IJ+〈β〉. Note 〈β〉 = I ·P1 · · ·Pk,
where none of the Pj ’s are J . Now

IJ + 〈β〉 = gcd(IJ, 〈β〉)
= I

That is good because γ ∈ I.
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(2) Want to show βαi ≡ βαj (mod IJ) implies i = j. We have IJ | 〈β〉〈αi − αj〉. This
is

IJ | I · P1 · · ·Pk〈αi − αj〉
=⇒ IJ | P1 · · ·Pk〈αi − αj〉

J | 〈αi − αj〉
=⇒ i = j

Lemma. Let α 6= 0 ∈ OK . Then N(〈α〉) = |NK/Q(α)|.

Proof. Let α1, . . . , αd be an integral basis. Then

〈α〉 = αα1Z⊕ · · · ⊕ ααdZ.

Now we can calculate:

N(〈α〉)2 = disc(αα1, . . . , ααd)

disc(α1, . . . , αd)

and

disc(αα1, . . . , ααd) = det(σi(ααj))
2

σ1(α)
2 · · ·σd(α)2 · det(σi(αj))

2

= NK/Q(α)
2 disc(K)

Let L/K be an extension of number fields. Given an ideal I ⊂ OK , we can associate to
it an ideal in OL:

I · OL = {α1β1 + · · ·+ αkβk : αi ∈ I, βi ∈ OL}

This is indeed an ideal in OL.

It is the smallest ideal that contains I.

Fact:
(I1OL) · (I2OL) = (I1I2)OL

Given an ideal I ⊂ OL, we can associate to it one in OK : I ∩OK . Again this is an ideal.
In general:

(I ∩ OK)(I2 ∩ OK) 6= (I1I2 ∩ OK)
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Lemma. The following are equivalent for P ⊂ OK and Q ⊂ OL primes:

(1) Q | POL.

(2) Q ∩ OK = P .

Proof.

(1) =⇒ (2) Q ⊃ POL ⊃ P . So Q ∩ OK ⊃ P . But P is a maximal ideal, so enough to
show that Q ∩ OK ( OK . And this follows by 1 /∈ Q.

(2) =⇒ (1) (2) implies Q ⊃ P and hence Q ⊃ POL because Q is an ideal. Then
Q | POL.

Definition (Lying above). Let P ⊂ OK , Q ⊂ OL be primes. If Q | POL (or
equivalently Q ∩OK = P ), we say that Q lies above or over P , and P lies under or
below Q.

Lemma. For all primes Q ⊂ OL, there is a unique prime in OK that lies under it.
For all primes P ⊂ OK , there is at least one in OL that lies over it.

Proof.

(i) Need to show Q ∩ OK is a prime. Observe that 1 /∈ Q ∩ OK , so is a proper ideal.
Since OL/Q is finite, the image of OK (OK/Q ∩ OK) in it is also finite. Since
OK is infinite, Q ∩ OK 6= 〈0〉. Suppose that α, β ∈ OK and αβ ∈ Q ∩ OK . Then
αβ ∈ Q, a prime ideal, hence α ∈ Q or β ∈ Q. So α ∈ Q ∩OK or β ∈ Q ∩OK . So
Q ∩ OK is indeed a prime.

(ii) We only need to show that POL is a proper ideal, because then it has prime factors.
To that end: OL = (POL)(P

−1OL). If OL = POL, then

OL = OL(P
−1OL) = P−1OL

so P−1 ⊂ OL. But we have seen that P−1 contains elements which are not algebraic
integers.

Start of
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lecture 9 Definition (Ramification index). Given an extension of number fields L/K, and
primes P ⊂ OK , Q ⊂ OL such that P lies over Q, we define e(Q | P ) to be the
largest e ∈ Z such that Qe | POL.

Observe: OL → OL/Q sends OK to OK/P because Q ∩ OK = P , so OL/Q | OK/P .

Definition (Inertial degree). If P lies over Q, we define the inertial degree

f(Q | P ) = [OL/Q : OK/P ].

Let M/L, let R ⊂ OM be a prime that lies over Q. Then R lies over P , and

e(R | P ) = e(R | Q)e(Q | P )

f(R | P ) = f(R | Q)f(Q | P )

Lemma. For all ideals I, ∃k ∈ Z>0 such that Ik is a principal ideal.

Proof. Later. This Lemma is only stated now so that we can use it in the following
proofs.

Proposition. Let L/K. Let I ⊂ OK . Then N(IOL) = N(I)[L:K].

Proof. True for principal ideals. Indeed, if I = αOK for some α ∈ OK , then

IOL = αOL

N(αOK) = NK/Q(α)

N(αOL) = NL/Q(α) = NK/Q(α)
[L:K]

Now to prove for a general ideal I, pick k > 0 such that Ik is principal. Then by the
above, the equality holds for Ik. Hence it holds for I, by multiplicativity of N(I) (since
N(I) is a positive integer).

Theorem. Let Q1, . . . , Qr be the primes in OL that lies above P ⊂ OK . Then:

[L : K] =
r∑

j=1

e(Qj | P )f(Qj | P ).
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Proof. POL = Q
e(Q1|P )
1 · · ·Qe(Qr|P )

r (by the definition of ramification index). Then

N(POL) = N(Q1)
e(Q1|P ) · · ·N(Qr)

e(Qr|P ) = N(P )
∑r

i=1 e(Qi|P )f(Qj |P ).

By the above Proposition,
N(POL) = N(P )[L:K].

So the desired equality follows, since N(P ) > 1.

Theorem (Dedekind). Let K be a number field. Let P ⊂ OK a prime. Let p be
the rational prime below P . Let g ∈ OK [X] be monic and irreducible. Let α be a
root of g, and let L = K(α). Assume p - [OL : OK [α]]. Let g be the image of g in
(OK/P )[X]. Let

g = ge11 · · · g
er
r

be the factorisation of g into irreducibles in the (OK/P )[X]. Let gj ∈ OK [X] monic
such that gj ≡ gj (mod P ) for all j. Then Qj = POL + gj(α)OL is a prime in OL

with f(Qj | P ) = deg gj , and

POL = Qe1
1 · · ·Q

er
r .

Definition (Monogenic). A number field K is monogenic if there is α such that
OK = Z[α].

Proposition.
Qe1

1 · · ·Q
er
r ⊂ POL

Proof. Pick ej elements (not necessarily distrinct) from each POL ∪ {gj(α)}, and mul-
tiply them together. Collect all such products in a set A. By definition, Qe1

1 · · ·Qer
r is

generated by A. So it is enough to show that A ⊂ POL. All but one element in A has
a factor in POL. The exception is g1(α)

e1 · · · gr(α)er ≡ g(α) = 0 (mod POL). Hence
g1(α)

e1 · · · gr(α)er ∈ POL.

Start of

lecture 10 Proposition. POL/Qj is a factor of (OK/P )[X]/〈gj〉 (“factor” is another way of
saying “quotient of”).
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Two possible factors (since gj is irreducible, so (OK/P )[X]/〈gj〉 is a field): POL/Qj
∼=

{0}, so Qj = POL, or POL/Qj
∼= (OK/P )[X]/〈gj〉, in which case Qj is a prime and

f(Qj | P ) = deg gj .

For A ⊂ R, we use 〈A〉R to denote the ideal generated by A in R.

Lemma. Let R1
ϕ1→ R2

ϕ2→ R3 be surjective homomorphisms of rings. Let A ⊂ R1

such that 〈ϕ1(A)〉R2 = ker(ϕ2). Then:

ker(ϕ2 ◦ ϕ1) = 〈A〉R1 + ker(ϕ1).

Key point is to show:
ϕ1(〈A〉R1) = 〈ϕ1(A)〉R2 .

This uses the surjectivity of ϕ1.

Proof of Proposition. First we prove

(OK/P )[X]/〈gi〉 ∼= OK [α]/〈P , gj(α)〉

(OK/P )[X] (OK/P )[X]/〈gj〉

OK [X]

OK [α] OK [α]/〈P , gj(α)〉

ϕ2

ϕ1

χ1

χ2

ϕ2 ◦ ϕ1: Let A = {gj}. Then ϕ1(gj) = gj generates 〈gj〉 = ker(ϕ2).

ker(ϕ2 ◦ ϕ1) = 〈gj〉OK [X] + POK [X].

χ2 ◦ χ1: Let A = P ∪ {gj}. χ1(A) = P ∪ {gj(α)} generates ker(χ2).

ker(χ2 ◦ χ1) = POK [X] + 〈gj〉OK [X] + 〈g〉OK [X].

Noet g ≡ gj ◦ h (mod P ) (where h is the product of the other gi’s).{
gjh ∈ 〈gj〉OK [X]

g − gjh ∈ POK [X]
=⇒ g ∈ POK [X] + 〈gj〉OK [X]

So the RHS of the two earlier equations are equal, so ϕ2 ◦ϕ1 and χ2 ◦ χ1 have the same
kernel.

Observe Qj∩OK [α] ⊃ 〈P , gj(α)〉OK [α]. OK [α]/Qj∩OK [α] is a quotient ofOK [α]/〈P , gj(α)〉.
Enough to show that

OL/Qj
∼= OK [α]/(Qj ∩ OK [α])
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OL
ϕ→ OL/Qj , ϕ(OK [α]) ∼= OK [α]/(Qj ∩ OK [α]). Enough to show: OK [α] +Qj = OL.

Look at OL/(OK [α] +Qj) in the category of abelian groups. This is a quotient of both
OL/OK [α] and OL/Qj .

[OL : OK [α] +Qj ] | gcd([OL : OK [α]]︸ ︷︷ ︸
p-

, [OL : Qj ]︸ ︷︷ ︸
=N(Qj)

) = 1

where N(Qj) is a power of p because Qj lies above P that lies above p.

Proposition. If i 6= j, then Qi +Qj = OL.

Proof. gi, gj are two distinct irreducible polynomials in (OK/P )[X], a Euclidean domain.
By Euclidean algorithm, there exists hi, hj ∈ (OK/P )[X] such that

higi + hjgj = 1.

Let hi, hj be lifts of hi and hj in OK [X].

higi + hjgj ≡ 1 (mod P ).

There exists f ∈ POK [X] such that

hi(α)gi(α)︸ ︷︷ ︸
∈Qi

+hj(α)gj(α)︸ ︷︷ ︸
∈Qj

+ f(x)︸︷︷︸
∈P

= 1

So 1 ∈ Qi +Qj , so Qi +Qj = OL.

Proof of Dedekind. Recall: POL supsetQe1
1 · · ·Qer

r .

Start of

lecture 11 We will use the notation of Legendre symbols:

(
m

p

)
=


0 if p | m
1 if ∃a 6= 0 ∈ Z/pZ with a2 ≡ m (mod p)

−1 otherwise

See Number Theory for some properties.
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Theorem. Let K = Q(
√
m). Let p ∈ Z be prime and suppose m is square-free,

with m 6= 0, 1. Then:

(1) p is ramified in K, that is ∃P ⊂ OK such that pOK = P 2, if and only if p is od
and p | m, or p is even and m ≡ 2, 3 (mod 4).

(2) p is split in K, that is ∃P1, P2 ⊂ OK such that pOK = P1P2, if and only if p is
odd and

(
m
p

)
= 1 or p = 2 and m ≡ 1 (mod 8).

(3) p is inert, that is pOK is a prime, if and only if p is odd and
(
m
p

)
= −1 or p = 2

and m ≡ 5 (mod 8).

Proof. If p is odd or if p = 2 and m ≡ 2, 3 (mod 4), then we can apply Dedekind with
g(x) = x2 − m, because p - [OK : Z[

√
m]]. If p = 2 and m ≡ 1 (mod 4), then we

can apply Dedekind with g(x) = x2 − m + 1−m
4 , which is the minimal polynomial of

1+
√
m

2 .

Definition (Class group). Write I for the set of fractional ideals in K, which form
an abelian group under multiplication. Let P denote the principal fractional ideals,
which form a subgroup. The class group of K is

Cl(K) = I/P.

We have seen that for all I ∈ I, there exists a ∈ Z such that aI ⊂ OK , that is aI is an
integral ideal. Thus each class in Cl(K) contains integral ideals.

Alternatively, Cl(K) can be defined as equivalence classes of integral ideals under I ∼ J ,
where I ∼ J if and only if ∃α ∈ K such that I = αJ .

Definition (Class number). The class number of K is h(K) = |Cl(K)|.

h(K) = 1 if and only if OK is a PID (which we also showed before happens if and only
if OK is a UFD).

Theorem. For all number fields, h(K) <∞.

In order to prove this, we need a couple of results:

28



Theorem (Minkowski’s bound). Let K be a number field, let I ⊂ OK be an ideal.
Write s for the number of pairs of complex embeddings of K. Then ∃α ∈ I such
that

|N(α)| ≤ d1

dd

(
4

π

)s

N(I)
√
disc(K).

Then by Stirling’s Approximation,

d1

dd
= (1 + σ(1))

√
2πde−d.

Corollary (Minkowski’s bound 2). Let K be a number field, and let s be the number
of pairs of complex embeddings of K. Then every ideal class in Cl(K) contains an
integral ideal I with

N(I) ≤ d1

dd

(
4

π

)s√
disc(K).

Proof. Let I be an ideal. Let J ⊂ OK be an ideal in the class of I−1. We apply the
Minkowski’s bound to J , so there is α ∈ J such that N(α) ≤ · · ·N(J)

√
disc(K). Since

α ∈ J , J | 〈α〉, so αJ−1 ⊂ OK is an ideal in the class of I. Also,

N(αJ−1) = |N(α)|N(J)−1 ≤ d1

dd

(
4

π

)s√
disc(K).

This implies h(K) <∞ because of:

Lemma. Let X ∈ R>0. Then there are only finitely many ideals in OK of norm
≤ X.

Proof. Each ideal of norm ≤ X is the product of at most log2(X) primes. The primes in
those decompositions lie over rational primes ≤ X. For each such prime, there at most
d primes of OK lying over it.

Computation of Cl(K):
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(1) Calculate X = d1

dd

(
4
π

)s√
disc(K). For K = Q(

√
m), we get:

X =



√
m
2 if m > 1 and m ≡ 1 (mod 4)
√
m if m > 1 and m ≡ 2, 3 (mod 4)

2
√
−m
π if m < 0 and m ≡ 1 (mod 4)

4
√
−m
π if m < 0 and m ≡ 2, 3 (mod 4)

(2) List all rational primes ≤ X.

(3) Split all of these rational primes in OK , and make a list of all prime ideals with
norm ≤ X, say P1, . . . , Pk.

(4) Figure out when Pm1
1 · · ·Pmk

k is principal for some m1, . . . ,mk ∈ Z.

Corollary (Minkowski bound 3).

disc(K) ≥ d2d

(d1)2

(π
4

)2s
.

This follows from N(I) ≥ 1 and Minkowski’s bound 2.

Start of

lecture 12 Recall: σ1, . . . , σr are the embeddings K → C with real image, τ1, τ1, . . . , τs, τs are the
other embeddings, d = r + 2s. We defined

Σ : K → Rd

Σ(α) = (σ1(α), . . . , σr(α),Re(τ1(α)), Im(τ1(α)), . . . ,Re(τs(α)), Im(τs(α)))

Σ(OK) ⊂ Rd is a lattice, i.e. it is an additive subgroup of Rd generated by d linearly
independent elements.

coVol(Σ(OK)) = 2−s
√
disc(K).

Let I ⊂ OK be an ideal, then Σ(I) ⊂ Σ(OK) is a sublattice, and

coVol(Σ(I)) = 2−s
√

disc(I) = 2−sN(I)
√
disc(K).

(where disc(I) is the discriminant of a generating tuple).

N : Rd → R,

N (x1, . . . , xd) =

r∏
j=1

|xj |
s∏

j=1

(|xr+j |2 + |xr+j+1|2).

Note α ∈ K, N (Σ(α)) = |N(α)|. Need to prove that the lattive Σ(OK) contains a
non-zero element in the region:

{x ∈ Rd : N (x) ≤ N(I)
√
disc(K)}
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Geometry of numbers

Convex means that if x, y ∈ S and a ∈ (0, 1), then ax+ (1− a)y ∈ S.

Symmetric to 0 means that if x ∈ S, then −x ∈ S.

Lemma. Let Λ ⊂ Rd be a lattice, and let S ⊂ Rd be a Borel set with Vol(S) >
coVol(Λ), then there exists x 6= y in S such that x− y ∈ Λ.

Proof. Let F be a fundamental domain for Λ. Note that Rd is the disjoint union of

{F + a : a ∈ Λ}.

Define: S(a) = (S ∩ (F + a))− a for a ∈ Λ. Observe that S(a) ⊂ F .

Vol(S) =
∑
a∈Λ

Vol(S ∩ (F + a)) =
∑
a∈Λ

Then ∃a 6= b ∈ Λ and x ∈ S(a) ∩ S(b). Then x+ a 6= x+ b ∈ S, and (x+ a)− (x+ b) =
a− b ∈ Λ.

Theorem (Minkowski’s theorem). Let Λ ∈ Rd be a lattice, and let S ⊂ Rd be
convex and symmetric to 0. Suppose coVol(S) > 2d coVol(Λ). Then ∃x ∈ Λ ∩ S
such that x 6= 0.
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Proof. We apply the lemma for the set

1

2
S =

{
1

2
x : x ∈ S

}
.

Then Vol
(
1
2S
)
= 2−dVol(S). We get x 6= y ∈ 1

2S such that x−y ∈ Λ. THen 2x,−2y ∈ S,
and by symmetry, x− y = 1

2(2x) +
1
2(−2y) ∈ S by convexity.

Example (non-example). Λ = Zd, S = (−1, 1)d, coVol(S) = 2d = 2d coVol(Λ),
S ∩ Λ = {0}.

Is S is closed in addition, then > can be replaced by ≥.

Proof of Minkowski’s bound. Consider S = [−Y, Y ]d for some Y ∈ R. Then Vol(S) =
2dY d, and |N (x)| ≤ 2sY d for x ∈ S. Minkowski’s theorem gives S ∩Λ 6= {0} if Vol(S) >
2s coVol(Λ).

Start of

lecture 13 Note that for I ⊂ OK , there exists k > 0 such that Ik is principal if and only if the
order of I in Cl(K) is finite. But we now that Cl(K) is finite, hence the order is always
finite, so there always exists some k > 0 such that Ik is principal.

Units: α ∈ OK is a unit if α−1 ∈ OK . Notation:

O×
K := {u ∈ OK | u is a unit}.

Lemma. The following are equivalent for α ∈ OK :

(1) α ∈ O×
K .

(2) N(α) = ±1.

(3) 〈α〉 = OK .

Proof.

(1) ⇒ (2) N(α) ∈ Z and
N(α)N(α−1) = N(αα−1) = N(1) = 1

with both N(α), N(α−1) ∈ Z since α, α−1 ∈ OK . Hence N(α) = ±1.
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(2) ⇒ (3) Note:

N(〈α〉) = |N(α)| = 1 =⇒ |OK/〈α〉| = 1 =⇒ 〈α〉 = OK .

(3) ⇒ (1) If 〈α〉 = OK , then 1 = α · β for some β ∈ OK . Hence α ∈ O×
K .

Quadratic fields

Let m 6= 0, 1, m square-free, K = Q(
√
m). Recall:

OK =

{
a+ b

√
m : a, b ∈ Z if m ≡ 2, 3 (mod 4)

a+b
√
m

2 : a, b ∈ Z, 2 | a+ b if m ≡ 1 (mod 4)

We have
N(a+ b

√
m) = (a+ b

√
m)(a− b

√
m) = a2 −mb2.

There are 2 cases:

• m ≡ 2, 3 (mod 4): O×
K is the elements u = a+ b

√
m with a, b ∈ Z such that

a2 −mb2 = ±1 (∗)

• m ≡ 1 (mod 4): O×
K is the elements u = a+b

√
m

2 with a, b ∈ Z such that

a2 −mb2 = ±4 (∗∗)

First consider m < 0. If m ≤ −5, then

−mb2 = ±4− a2 ≤ 4 =⇒ |b| ≤ 4

5
=⇒ b = 0.

Then u = ±1. We can go over the cases m = −1,−2,−3,−4 by hand:

• m = −1, the units are ±1, ±
√
−1.

• m = −2,−4 the units are ±1.

• m = −3, the units are ±1, ±1±
√
−3

2 .

Now move onto m ≥ 2.
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Theorem. Let K = Q(
√
m), m ≥ 2, squarefree. Then there is a unit u > 1 that is

smallest, and all units are of the form:

O×
K = {±un : n ∈ Z}.

Proof. We first show that all units u > 1 are of the form u = a + b
√
m with a, b > 0.

Note:
N(u) = ±1 = (a+ b

√
m)(a− b

√
m)

hence
{±u±1} = {±a±

√
mb}.

If u > 1, then these are distinct, and a +
√
mb are the largest among them. Therefore

a, b > 0 indeed. The fact that u with u > 1 exists is not examinable, but there are two
ways to see this:

(1) The Pell equation a2 −mb2 = 1 always has positive solutions (see Part II Number
Theory).

(2) Can be proved using Minkowski’s theorem. We will sketch this proof.

We prove that there exists a smallest u among those > 1. Suppose not. Then ∃u1, u2, . . . ,∈
O×

K such that u1, u2 > u3 > · · · > 1. Then un
un+1

→ 1, with each term lying in O×
K and

greater than 1. Then un
un+1

≥ 1+
√
m

2 > 1, which is a contradiction. Let v ∈ O×
K . We

show that v = ±u±n for some n ∈ Z. Clearly this is true for v if and only if true for
±v±1. So we can assume v ≥ 1. v = 1 is obvious, so assume v > 1. We cannot have

v ∈ (un, un+1)

for any n ≥ 0 because then v · u−n ∈ O×
K and 1 < v · u−n < u, contradicting the choice

of u. So v = un for some n ≥ Z≥1.

This u in the theorem is called the fundamental unit.

We can find the fundamental unit by searching through the solutions of (∗) or (∗∗). For
this the following observation helps:

Let (a1, b1) and (a2, b2) be solutions of (∗) with a1, a2, b1, b2 ≥ 0. Then 1 ≤ b1 < b2
implies:

a21 = mb21 ± 1 < mb22 ± 1 = a22

So a21 < a22, so in fact a1 + b1
√
m < a2 + b2

√
m. So when looking for the fundamental

solution, it suffices to find the solution with b minimal.
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Theorem (Dirichlet’s unit theorem). Let K be a number field with r real embed-
dings and s pairs of complex embeddings. Let W denote the roots of unity contained
in OK , that is α ∈ OK such that αm = 1 for some m ∈ Z. Then there are r+ s− 1
units u1, u2, . . . , ur+s−1 ∈ O×

K such that all units can be written uniquely as

ωun1
1 · · ·u

nr+s−1

r+s−1

for some n1, . . . , nr+s−1 ∈ Z and ω ∈W . In addition, |W | <∞.

Start of

lecture 14 The logarithmic embedding is

log : K → Rr+s;α 7→ (log |σ1(α)|, . . . , log |σr(α), 2 log |τ1(α)|, . . . , 2 log |τs(α)|)>,

which is a homomorphism from (K, ·) to (Rr+s,+). Observe that

log |N(α)| =
r+s∑
i=1

(log(α))j .

We write V ⊂ Rr+s for {x : x + 1 · · · + xr+s = 0}. If α ∈ O×
K , then N(α) = ±1, and

hence logα ∈ V .

Proposition 1. ker(log) = W and |W | <∞.

Proposition 2. log(O×
K) is a lattice in V .

Proof of Dirichlet’s unit theorem (non-examinable). Let x1, . . . , xr+s−1 be a basis for
log(O×

K). We can choose uj such that log(uj) = xj . Easy to check that the theorem
holds with this choice.

Proof of Proposition 1. If logα = 0, then |σj(α)| = 1, |τj(α)| = 1 for all j. This means
that

‖Σ(α)‖ ≤
√
d,

and Σ(OK) is a lattice, so it has a finite intersection with B(0,
√
d) = {v ∈ Rd | ‖v‖ <√

d}. Then | ker(log)| < ∞. ker(log) is a group under ·. So α ∈ ker log has finite, i.e.
αm = 1 for some n ∈ Z>0. Thus α ∈W .
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Lemma. Let Λ ⊂ V be an additive subgroup. Then Λ is a lattice if and only if
there is R ∈ R>0 such that Λ ∩B(x,R) is finite and non-empty for all x ∈ V .

Proof. Omitted.

Proof of Proposition 2. To prove Proposition 2, we need the following: Given x ∈ Rr+s

with
∑

j xj = 0, we need to show that the set of units u ∈ O×
K that satisfy

‖ log(u)− x‖ < R

is finite and non-empty. For simplicity assume s = 0. The above inequality is equivalent
to

exje−R̃ ≤ |σj(u)| ≤ exj · eR̃

for all i. Finiteness follows from Σ(OK) being a lattice.

Non-empty is more difficult. Observe: enough to show ∃u ∈ O×
K with

|σj(u)| ≤ C0e
xj . (∗)

This is because: |N(u)| = 1, so

∏
|σj(u)| = 1 =⇒ |σj(u)| ≥

∏
k 6=j

|σk(u)|

−1

≥ Cd−1
0 e

∑
k 6=j xk = Cd−1

0 e−xj

By Minkowski’s theorem applied to the lattice Σ(OK) and the convex set

{v : |vj | < C0e
xj}

gives α ∈ OK that satisfies (??) provided C0 is large enough. Now the problem is that
α may not be a unit. However:

|N(α)| ≤ Cd
0

∏
i

exi = Cd
0

where Cd
0 is some constant which depends only on K. There are only finitely many

principal ideals in OK with norm ≤ Cd
0 . Fix a generator in each of them, say αI for the

generator of I. Let α ∈ OK that the argument gives, so it satifies (∗) and |N(α)| < Cd
0 .

Then 〈α〉 = 〈α〈α〉〉. Therefore α · α−1
〈α〉 ∈ O

×
K .
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Cyclotomic Fields

Notation. k ∈ Z>0, then θk = 22πi/k. This is a primitive k-th root of unity.

Lemma. Fix p ∈ Z a prime. Let K = Q(θp). Let W be the roots of unity in OK .
Then

W = {±θkp : k = 0, . . . , p− 1} = {θk2p : k = 0, . . . , 2p− 1}.

Proof. Let t ∈ R>0 minimal with the property that e2πit ∈ W . Recall that W is finite.
Recall that W is finite, so this minimum exists. Claim: if e2πis ∈ W , then s/t ∈ Z. If
not then e2πi(s−(s/t)t ∈W . This contradicts minimality. I know e2πi/2p ∈W . So t = 1

k2p
for some k ∈ Z>0.

Start of

lecture 15 TODO

Start of

lecture 16 p ∈ Z≥3 a prime, θp = e2πi/p, K = Q(θp). ∀i, j ∈ Z with I 6≡ j (mod p), there exists
ui,j ∈ Z[θp]× such that p = ui,j(1− θp)

p−1.

Proof of OK = Z[θp]. We made an indirect assumption, and we want to get a contradic-
tion. We found β ∈ OK \ zZ[θp] and γ ∈ Z[θp] and α ∈ Z such that

(1− θp)β = a+ (1− θp)γ.

We have p - a, for otherwise
β =

a

1− θp
+ γ,

and if a = pa′, then
a

1− θp
=

a′u(1− θp)
p−1

1− θp
∈ Z[θp].

So β ∈ Z[θp], which is not the case. This proves p - a. On the other hand,

a

1− θp
= β − γ ∈ OK .

Then
1

a

(
a

1− θp

)p−1

︸ ︷︷ ︸
∈OK

=
ap−1

p︸ ︷︷ ︸
∈Q
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hence
ap−1

p
∈ Z,

a contradiction to p - a.

Proof of the claim that: 〈p〉 = P p−1 for a prime P ⊂ OK , and

P = 〈θip − θjp〉

for any i, j ∈ Z such that i 6≡ j (mod p).

Let Pij = 〈θip − θjp〉, then 〈p〉 = P p−1
ij . N(〈p〉) = pp−1, hence N(Pij) = p. So Pij must be

a prime ideal. By uniqueness of factorisation, Pij does not depend on i and j.

Definition (Regular prime). A prime p ∈ Z is regular if p - h(Q(θp)).

Theorem (Regular Fermat’s Last Theorem). Let p ≥ 5 ba a regular prime. Then
there are no solutions of

xp + yp = zp

with x, y, z ∈ Z. such that p - xyz (the case p - xyz is known as “Case I”).

Proposition. Assume that x, y, z is a solution of xp+yp = zp and assume gcd(x, y, z) =
1 and p - xyz. Then

x+ θpy = uαp

where u ∈ O×
K , and α ∈ OK .

Proof. Recall:
(x+ y)(x+ θpy) · · · (x+ θp−1

p y) = zp.

Claim: there is no prime Q ⊂ OK such that Q | 〈x+ θipy〉, 〈x+ θjpy〉 for i 6≡ j (mod p).

Suppose the contrary. Then

Q | 〈θipy − θjpy〉︸ ︷︷ ︸
P 〈y〉

, 〈θ−i
p x− θ−j

p x〉︸ ︷︷ ︸
P 〈x〉

.

If Q = P , then P | 〈z〉p, so P | 〈z〉, so z ∈ P ∩ Z = pZ, hence p | z, cotnradicting our
assumption of being in Case I. So Q 6= P . Then Q | 〈x〉, 〈y〉, so x, y ∈ Q. We must have
gcd(x, y) = 1, for any common prime factor would also divide z by zp = xp + yp, and
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we assume gcd(x, y, z) = 1. So we can find a, b ∈ Z such that 1 = ax+ by. Then 1 ∈ Q,
which is not possible. So we have proved the claim (that there is no prime Q dividing
more than one of the ideals 〈x+ θipy〉).

Then 〈x + θpy〉 = Ip for some ideal I ⊂ OK (not necessarily prime). We assumed that
p - h(K). Hence the only class in the class group whose p-th power is the unit element,
that is the class of principal ideals, is the unit element itself (the class of principal ideals).
We know that Ip is principal because Ip = 〈x + θpy〉, so I must be principal too, and
the proposition follows.

Proposition. Assume that x, y, z is a solution of xp+yp = zp and assume gcd(x, y, z).
Then we must have x ≡ y (mod p).

Proof. Suppose that there is a solution x, y, z. We may assume gcd(x, y, z) = 1 (by
dividing by any common factor). By a previous proposition, we get x ≡ y (mod p).
Applying it to xp − zp = yp, we get x ≡ −z (mod p). Then

xp + yp − zp ≡ 3xp (mod p)

But the LHS is equal to 0, so p | 3xp, but p - 3, because p ≥ 5, and p - x because of Case
I.

Start of

lecture 17 TODO
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