%! TEX root = LST.tex % vim: tw=50 % 06/02/2024 09AM \begin{flashcard}[chain-defn] \begin{definition*}[Chain] \glsnoundefn{chain}{chain}{chains} \cloze{A subset $S$ of a \gls{poset} $X$ is a \emph{chain} if it is \glsref[linord]{linearly ordered} by the \gls{partord} on $X$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item Every \glsref[linord]{linearly ordered} set is a \gls{chain} in itself. \item Any subset of a \gls{chain} in a \gls{poset}. \item In $\NN$ with $a \ple b \iff a \mid b$, $\{2^n \st n = 0, 1, 2, \ldots\}$ is a \gls{chain}. \item In $\PP(\{1, 2, 3\})$ with $\subset$, $\{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}\}$ is a \gls{chain}. \item $\{a, c, d, e\}$ is a chain in \begin{center} \includegraphics[width=0.6\linewidth]{images/f1553fabe3384fa0.png} \end{center} \item In $\PP \QQ$, $\{(-\infty, x) \cap \QQ \st x \in \RR\}$ is an uncountable \gls{chain} in $\PP\QQ$. \end{enumerate} \end{example*} \begin{flashcard}[antichain-defn] \begin{definition*}[Antichain] \glsnoundefn{achain}{antichain}{antichains} \cloze{A subset $S$ of a \gls{poset} $X$ is an \emph{antichain} if no two distinct members of $S$ are related, i.e. $\forall x, y \in S, x \ple y \implies x = y$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item In a \glsref[linord]{linearly ordered} set there is no \gls{achain} of size $> 1$. \item In $\NN$ with $a \ple b \iff a \mid b$, the set of primes is an \gls{achain}. \item In $\PP(\{1, 2, \ldots, n\})$ with $\subset$, for any $k$, $0 \ple k \ple n$, \[ \mathcal{F}_k = \{A \subset \{1, \ldots, n\} \st |A| = k\} \] is an \gls{achain}. \item In \begin{center} \includegraphics[width=0.6\linewidth]{images/f1553fabe3384fa0.png} \end{center} $\{b, d\}$ and $\{b, c\}$ are \glspl{achain}. \item In \begin{center} \includegraphics[width=0.6\linewidth]{images/d0a658d1b5c54a3b.png} \end{center} the whole set is an \gls{achain}. \end{enumerate} \end{example*} \begin{flashcard}[upper-bound-defn] \begin{definition*}[Upper bound] \glsnoundefn{ub}{upper bound}{upper bounds} \cloze{Let $S$ be a subset of a \gls{poset} $X$. Say $x \in X$ is an \emph{upper bound} for $S$ if $\forall y \in S$, $y \ple x$.} \end{definition*} \end{flashcard} \begin{flashcard}[lub-defn] \begin{definition*}[Least upper bound] \glsnoundefn{lub}{least upper bound}{least upper bounds} \glsnoundefn{sup}{supremum}{suprema} \glssymboldefn{posup}{sup}{sup} \cloze{Say $x \in X$ is a \emph{least upper bound} or \emph{supremum} for $S$ if $x$ is an \gls{ub} for $S$ and $x \ple y$ for all \glspl{ub} $y$ for $S$. If it exists, we denote this by $\sup S$ or $\bigvee S$ (`join' of $S$).} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item In $\RR$, $\posup [0, 1] = 1$, $\posup(0, 1) = 1$. \item $\QQ$ has no \gls{sup} in $\QQ$, as it doesn't even have any \gls{ub}. \item In \begin{center} \includegraphics[width=0.6\linewidth]{images/e38e4a67252b4e77.png} \end{center} $\{a, b\}$ has \glspl{ub}, for example $c, d$, but no \gls{lub}. \item If $X = \PP A$, $A$ any set, $S \subset X$, then $\posup S = \bigcup\{B \subset A \st B \in S\}$. \end{enumerate} \end{example*} \begin{flashcard}[complete-poset-defn] \begin{definition*}[Complete Partial Order] \glsadjdefn{complete}{complete}{\gls{poset}} \cloze{A \gls{poset} $X$ is \emph{complete} if every $S \subset X$ has a \gls{sup}.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate} \item $\PP A$ for any $A$ is \gls{complete}. \item $[0, 1]$ is \gls{complete}. \item $\RR$ is not \gls{complete}. \item $\QQ \cap [0, 2]$ is not \gls{complete}. \end{enumerate} \end{example*} \begin{remark*} A \gls{complete} \gls{poset} $X$ has a greatest element $\posup X$ and a least element $\posup \emptyset$. In particular, $X \neq \emptyset$. \end{remark*} \begin{flashcard}[order-preserving-function] \begin{definition*}[Order-preserving function] \glsadjdefn{op}{order-preserving}{function} \cloze{Let $f : X \to Y$ be a function between \glspl{poset} $X, Y$. Say $f$ is \emph{order-preserving} if $\forall x, y \in X$, $x \ple y \iff f(x) \ple f(y)$.} \end{definition*} \end{flashcard} \begin{note*} $f$ need not be injective. But $f$ is \gls{op} injective if and only if $\forall x, y \in X$, $x \plt y \iff f(x) \plt f(y)$. \end{note*} \begin{example*} $f : \NN \to \NN$, $f(n) = n + 1$ (with the usual order). $g : \PP(A) \to \PP(A)$, $A \mapsto A \cup B$, $B$ fixed. \end{example*} \begin{flashcard}[fixed-point-defn] \begin{definition*}[Fixed point] \glsnoundefn{fp}{fixed point}{fixed points} \cloze{Let $X$ be any set. Then a \emph{fixed point} for a function $f : X \to X$ is an element $x \in X$ such that $f(x) = x$.} \end{definition*} \end{flashcard} \begin{flashcard}[kt-fp-thm] \begin{theorem}[Knaster-Tarski Fixed Point Theorem] \label{kt_fp} \cloze{If $X$ is a \gls{complete} \gls{poset} and $f : X \to X$ is \gls{op}, then $f$ has a \gls{fp}.} \end{theorem} \begin{proof} \cloze{Let $S = \{x \in X \st x \ple f(x)\}$. Let $z = \posup S$. Let $x \in S$. Then $x \ple z$, so $f(x) \ple f(z)$. Since $x \in S$, $x \ple f(x)$, so by transitivity, $x \ple f(z)$. Thus $f(z)$ is an \gls{ub} for $S$, so $z \ple f(z)$. It follows that $f(z) \ple f(f(z))$. So $f(z) \in S$, and thus $f(z) \ple z$. So $z$ is a \gls{fp}.} \end{proof} \end{flashcard} \begin{flashcard}[Schroder-Bernstein-thm] \begin{corollary}[Schr\"oder-Bernstein Theorem] \label{schroeder_bernstein} \cloze{Let $A, B$ be sets and assume there exist injections $f : A \to B$ and $g : B \to A$. Then there exists a bijection $h : A \to B$.} \end{corollary} \fcscrap{ \begin{center} \includegraphics[width=0.6\linewidth]{images/dce563ec742745bd.png} \end{center} } \begin{proof} \cloze{We seek partitions $A = P \cup \QQ$, $B = R \cup S$ such that ($P \cap Q = \emptyset$, $R \cap S = \emptyset$), $f(P) = R$, $g(S) = Q$. Then we will have that \[ h : A \to B, \qquad h = \begin{cases} f & \text{on $P$} \\ g^{-1} & \text{on $Q$} \end{cases} \] Such partitions exist if and only if there exists $P \subset A$ such that \[ A \setminus g(B \setminus f(P)) = P .\] Let $X = \PP A$ with ordering by $\subset$. Define $H : X \to X$, \[ H(P) = A \setminus g(B \setminus f(P)) .\] $H$ is \gls{op} and $X$ is \gls{complete}, so by \nameref{kt_fp}, we can find such $P$.} \end{proof} \end{flashcard} \subsubsection*{Zorn's Lemma} \begin{flashcard}[maximal-element-defn] \begin{definition*}[Maximal element] \glsnoundefn{pomaxel}{maximal element}{maximal elements} \glsadjdefn{pomaxal}{maximal}{element} \cloze{Say an element $x$ in a \gls{poset} $X$ is \emph{maximal} if $\forall y \in X$, $x \ple y \implies x = y$. In other words, there is no $y \in X$ with $y \pgt x$.} \end{definition*} \end{flashcard} \begin{example*} In $\PP A$, $A$ is \gls{pomaxal}, $A$ is even a greatest element. In general, ``greatest'' $\implies$ \gls{pomaxal}, but the other way round does not hold. \end{example*} \begin{example*} In: \begin{center} \includegraphics[width=0.2\linewidth]{images/c5160a04d2c54623.png} \end{center} $c, d$ are both \gls{pomaxal}, but there does not exist a greatest element. \end{example*} \begin{flashcard}[Zorns-lemma] \begin{theorem}[Zorn's Lemma] \label{ZL} \cloze{Let $X$ be a (non-empty) \gls{poset} such that every \gls{chain} in $X$ has an \gls{ub} in $X$. Then $X$ has a \gls{pomaxel}.} \end{theorem} \begin{remark*} \cloze{$\emptyset$ is a \gls{chain} in $X$, so it has an \gls{ub}, so $X \neq \emptyset$. Often we check the \gls{chain} condition by checking it for $\emptyset$ (i.e. that $X \neq \emptyset$) and then for $\neq \emptyset$ \glspl{chain}.} \end{remark*} \begin{proof} \cloze{Assume $X$ has no \gls{pomaxel}. For each $x \in X$, fix $x' \pgt x$. We also fix an \gls{ub} $u(C)$ for every \gls{chain} $C \subset X$. Let $\gamma = \hartgamma(X)$ (from \nameref{hartogs}). Define $f : \gamma \to X$ by \nameref{recursion}: \begin{itemize} \item $f(0) = u(\emptyset)$. \item $f(\alpha + 1) = f(\alpha)'$. \item $f(\lambda) = u(\{f(\alpha) \st \alpha \plt \lambda\})'$ ($\lambda \neq 0$ \gls{limord}). \end{itemize} An easy \gls{induction} shows that $\forall \alpha \plt \beta$ (in $\gamma$), $f(\alpha) \plt f(\beta)$ (on $\beta, \alpha$, $\alpha$ fixed). This also shows $\{f(\alpha) \st \alpha \plt \beta\}$ is a \gls{chain} for all $\beta \plt \alpha$. Hence $f$ is an injection. This contradicts the definition of $\hartgamma(X)$.} \end{proof} \end{flashcard} \begin{remark*} Technically, for $\lambda \neq 0$ a \gls{limord}, $f(\lambda)$ should be defined as above if $\{f(\alpha) \st \alpha \plt \gamma\}$ is a \gls{chain} and $f(\lambda) = u(\emptyset)$ otherwise. Then by \gls{induction}, $\alpha \plt \beta \implies f(\alpha) \plt f(\beta)$, so the `otherwise' clause never happens. \end{remark*}