%! TEX root = LST.tex % vim: tw=50 % 03/02/2024 09AM \begin{remark*} The definition of $\alpha \opl \beta$ we gave last time is called the ``induction definition''. \end{remark*} \begin{flashcard}[synthetic-ordadd-defn] \begin{definition*}[Synthetic ordinal addition] \glssymboldefn{sopl}{$+$}{$+$} \glssymboldefn{wocup}{$\sqcup$}{$\sqcup$} \glsnoundefn{synthadd}{synthetic addition}{N/A} \cloze{Given \glsref[wellord]{well-ordered} sets $X, Y$, the disjoint union $X \sqcup Y$ is the \glsref[wellord]{well-ordered} set $\stackrel{X}{\leftrightarrow} \stackrel{Y}{\leftrightarrow}$. Formally, it is the set $X \times \{0\} \cup Y \times \{1\}$ with ordering: \[ (x, i) \wlt (y, j) \iff \begin{cases} \text{either $i = j = 0$ and $x \wlt y$ in $X$} \\ \text{or $i = j = 1$ and $x \wlt y$ in $Y$} \\ \text{or $i = 0, j = 1$ and $x \in X$, $y \in Y$} \end{cases} \] So this is a \glsref[wellord]{well-ordered} set $Z$ which has an \gls{is} $X'$ to $X$ and $Z \setminus X'$ is \gls{ordisic} to $Y$. This is unique up to \gls{ordisism}. For \glspl{ordinal} $\alpha, \beta \sopl \beta = \alpha \wocup \beta$ (more precisely, $\alpha \sopl \beta$ is the \gls{ot} of $X \wocup Y$ where $\alpha = \OT(X)$, $\beta = \OT(Y)$).} \end{definition*} \end{flashcard} \begin{note*} $\alpha\osucc = \alpha \wocup 1$. With this definition, it's easy to see that $\alpha \sopl (\beta \sopl \gamma) = (\alpha \sopl \beta) \sopl \gamma$ since $(\alpha \wocup \beta) \wocup \gamma$ is \gls{ordisic} to $\alpha \wocup (\beta \wocup \gamma)$. Also, we can easily prove $\beta \wle \gamma \implies \alpha \sopl \beta \wle \alpha \sopl \gamma$ as $\alpha \wocup \beta$ is an \gls{is} of $\alpha \wocup \gamma$. \end{note*} \begin{flashcard}[synthetic-inductive-ordadd-equiv-prop] \begin{proposition} The \glsref[indadd]{inductive} and \glsref[synthadd]{synthetic} definitions of \gls{ordinal} addition coincide. \end{proposition} \begin{proof} \newcommand\sdopl{\stackrel{.}{\sopl}} \cloze{Temporarily, let $\alpha \sdopl \beta$ denote the \glsref[synthadd]{synthetic addition}, and $\alpha \opl \beta$ denote the \glsref[indadd]{inductive addition}. We prove $\forall \alpha, \beta$ $\alpha \opl \beta \sdopl \beta$ by induction on $\beta$ (with $\alpha$ fixed). \begin{enumerate}[$\beta \neq 0$ limit:] \item[$\beta = 0$:] $\alpha \opl 0 = \alpha = \alpha \wocup 0$. \item[$\beta = \delta\osucc$:] $\alpha \opl \beta = (\alpha \opl \delta)\osucc = (\alpha \sdopl \delta)\osucc = (\alpha \wocup \delta) \wocup 1 = \alpha \wocup (\delta \wocup 1) = \alpha \sdopl \delta\osucc = \alpha \sdopl \beta$. \item[$\beta \neq 0$ {\glsref[limord]{limit}}:] \phantom{} \\[-2.5\baselineskip] \begin{align*} \alpha \opl \beta &= \sup\{\alpha \opl \gamma \st \gamma \olt \beta\} \\ &= \sup\{\alpha \sdopl \gamma \st \gamma \olt \beta\} \\ \bigcup_{\gamma \olt \beta} \alpha \wocup \gamma \\ &= \alpha \wocup \bigcup_{\gamma \olt \beta} \gamma \\ &= \alpha \wocup \beta \\ &= \alpha \sdopl \beta \end{align*} (as $\alpha \wocup \gamma$, $\gamma \olt \beta$ are nested). \qedhere \end{enumerate}} \end{proof} \end{flashcard} \subsubsection*{Ordinal Multiplication} We give two definitions: inductive and syntetic. \begin{flashcard}[inductive-mult-defn] \begin{definition*}[Inductive multiplication] \glssymboldefn{ocdot}{$\cdot$}{$\cdot$} \cloze{Define $\alpha \cdot \beta$ by recursion on $\beta$ ($\alpha$ fixed): \begin{itemize} \item $\alpha \cdot 0 = 0$ \item $\alpha \cdot \beta\osucc = \alpha \cdot \beta \opl \alpha$ \item $\alpha \cdot \beta = \sup\{\alpha \cdot \gamma \st \alpha \olt \beta\}$ (for $\beta \neq 0$ \gls{limord}) \end{itemize}} \end{definition*} \end{flashcard} \begin{example*} For $m, n \olt \omega$, we have $m \ocdot 0 = 0$, $m \ocdot (n \opl 1) = m \ocdot n\osucc = m \ocdot n \opl m$. This gives the usual multiplication. \[ \oomega \ocdot 2 = \oomega \ocdot 1\osucc = \oomega \ocdot 1 \opl \oomega = \oomega \cdot 0\osucc \opl \oomega = (\oomega \ocdot 0 \opl \oomega) \opl \oomega = \oomega \opl \oomega \] \[ 2 \ocdot \oomega = \sup\{2 \ocdot n \st n \olt \oomega\} = \oomega \neq \oomega \ocdot 2 \] So multiplication is not commutative. \end{example*} \begin{flashcard}[synth-mult-defn] \begin{definition*}[Synthetic multiplication] \cloze{Given \glsref[wellord]{well-ordered} sets $X, Y$, we \glsref[wellord]{well-order} $X \times Y$ by \[ (x, y) \wlt (w, z) \iff \begin{cases} \text{either $y = z$ and $x \wlt w$ in $X$} \\ \text{or $y \wlt z$ in $Y$} \end{cases} \] For \glspl{ordinal} $\alpha, \beta$ define $\alpha \socdot \beta = \alpha \times \beta$ (the \gls{ot} of $X \times Y$ where $X$ has \gls{ot} $\alpha$, $Y$ has \gls{ot} $\beta$).} \end{definition*} \end{flashcard} \begin{note*} As before, the two definitions coincide (proof by inductionon $\beta$). \end{note*} \textbf{Properties:} \[ \alpha \ocdot (\beta \ocdot \gamma) = (\alpha \ocdot \beta) \ocdot \gamma \] \[ \beta \ole \gamma \implies \alpha \ocdot \beta \ole \alpha \ocdot \gamma \] On \es{2}, you will check whether the following are true: \[ (\alpha \opl \beta) \ocdot \gamma = \alpha \ocdot \gamma \opl \beta \ocdot \gamma \] \[ \alpha \ocdot (\beta \opl \gamma) = \alpha \ocdot \beta \opl \alpha \ocdot \gamma \] \subsubsection*{Ordinal Exponentiation} Define $\alpha^\beta$ by recursion on $\beta$ ($\alpha$ fixed): \begin{itemize} \item $\alpha^0 = 1$ \item $\alpha^{\beta\osucc} = \alpha^\beta \ocdot \alpha$ \item $\alpha^\beta = \sup\{\alpha^\gamma \st \gamma \olt \beta\}$ (for $\beta \neq 0$ \gls{limord}) \end{itemize} \begin{example*} For $m, n \olt \oomega$, $m^n$ has usual meaning. \[ \oomega^2 = \oomega^{1\osucc} = \oomega^1 \ocdot \oomega = \oomega^{0\osucc} \ocdot \oomega = (\oomega^0 \ocdot \oomega) \ocdot \oomega = \oomega \ocdot \oomega \] \[ 2^{\oomega} = \sup\{2^n \st n \wlt \oomega\} = \oomega \] which is countable! \end{example*} \subsubsection*{** Non-examinable **} Let $X$ be a separable Banach space, then $X \hookrightarrow C[0, 1]$ (universal property for separable Banach spaces). \textbf{Question:} Does there exist a universal space for separable reflexive spaces? \newcommand{\Sz}{\mathrm{Sz}} \textbf{Answer:} No (Szlenk). To each Banach space $X$ you associate an \gls{ordinal} $\Sz(X)$ (Szlenk index of $X$). For all separable $X$, $\Sz(X) \ole \omegaone$. \[ \Sz(X) \olt \omegaone \iff X^* \text{ separable} \] \[ X \hookrightarrow Y \implies \Sz(X) \ole \Sz(Y) \] $\forall \alpha \olt \omegaone$, there exists separable reflexive $X_\alpha$ such that $\Sz(X_\alpha) \ogt \alpha$. If $Z$ is separable reflexive and for all separable reflexive $X$, $X \hookrightarrow Z$ then $X_\alpha \hookrightarrow Z$ for all $\alpha \olt \omegaone$, so $\Sz(Z) \oge \Sz(X_\alpha) \ogt \alpha$. So $\Sz(Z) = \omegaone$, contradiction. \textbf{This is the end of the non-examinable part.} \newpage \section{Posets and Zorn's Lemma} \label{sec3} \begin{flashcard}[partial-order-defn] \begin{definition*}[Partial order] \glsnoundefn{partord}{partial order}{partial orders} \glssymboldefn{ple}{$\le$}{$\le$} \cloze{A \emph{partial order} on a set $X$ is a relation $\le$ that is: \begin{enumerate}[\bfseries antisymmetric:] \item[\bfseries reflexive:] $\forall x \in X$, $x \le x$ \item[\bfseries antisymmetric:] $\forall x, y \in X$, $(x \le y \wedge y \le x) \implies x = y$ \item[\bfseries transitive:] $\forall x, y, z \in X$, $(x \le y \wedge y \le z) \implies x \le z$ \end{enumerate} We will write $x < y$ for ``$x \le y$ and $x \neq y$''. This is: \begin{enumerate}[\bfseries irreflexive] \item[\bfseries irreflexive:] $\forall x$, $\neg(x < x)$. \item[\bfseries transitive:] $\forall x, y, z$, $((x < y) \wedge (y < z)) \implies x < z$. \end{enumerate} } \end{definition*} \end{flashcard} \begin{flashcard}[poset-defn] \begin{definition*}[Partially ordered set] \glsnoundefn{poset}{partially ordered set}{partially ordered sets} \cloze{A \emph{partially ordered set} or \emph{poset} is a set $X$ with a \gls{partord}.} \end{definition*} \end{flashcard} \textbf{Examples:} \begin{enumerate}[(1)] \item Every \glsref[linord]{linearly ordered} set. \item $\NN$ with $a \ple b \iff a \mid b$. \item For a set $X$ $\PP X$ with $a \ple b \iff a \subset b$. \item Every subset of a \gls{poset}: for example, if $G$ is a group, then \[ \{H \in \PP G \st \text{$H$ is a subgroup of $G$}\} \] \item Posets given by Hasse diagrams. For example \begin{center} \includegraphics[width=0.3\linewidth]{images/fc4f4be901ff4087.png} \end{center} $X = \{a, b, c, d, e, f\}$. $b, c \pgt a$, $d \pgt b, c$, $e \pgt c$, $f \pgt d, e$ and all relations that follow by transitivity. ($e \not \pgt b$, $f \pgt a$). In general, a Hasse diagram for a \gls{poset} $X$ is a grawing of elements of $X$ where we join $x$ to $y$ with an upward line if $y > x$ and $\nexists z$ with $y > z > x$. For example: \begin{center} \includegraphics[width=0.3\linewidth]{images/18df7313851645a3.png} \end{center} \item \phantom{} \begin{center} \includegraphics[width=0.3\linewidth]{images/51f5d36910b049e8.png} \end{center} \item \phantom{} \begin{center} \includegraphics[width=0.3\linewidth]{images/6f6f07bba80e43b5.png} \end{center} \item \phantom{} \begin{center} \includegraphics[width=0.3\linewidth]{images/27b2db064c934841.png} \end{center} \end{enumerate}