%! TEX root = LST.tex % vim: tw=50 % 01/02/2024 09AM \textbf{Question:} Does there exist an uncountable \gls{ordinal}, i.e. does there exist an uncountable \glsref[wellord]{well-ordered} set? Can we well order $\RR$? \begin{flashcard}[uncountable-ordinal-existence-thm] \begin{theorem} \label{uncountable_ordinal_existence} There exists an uncountable \gls{ordinal}. \end{theorem} \fcscrap{\textbf{Idea:} Assume $\alpha$ is an uncountable \gls{ordinal}. Then there is a least such $\alpha$: \[ \{\beta \in \I_{\alpha} \cup\{\alpha\} \st \text{$\beta$ uncountable}\} \neq \emptyset ,\] so has a least element $\gamma$, say. So $\I_\gamma$ is exactly the set of all countable \glspl{ordinal}. If $X$ is a countable \glsref[wellord]{well-ordered} set, then there exists an injection $f : X \to \NN$. Then $Y = f(X)$ is \glsref[wellord]{well-ordered} by $f(x) \wlt f(y) \iff x \wlt y$ in $X$. Then $Y$ is \gls{ordisic} to $X$.} \begin{proof} \cloze{Let \[ A = \{(Y, \wlt) \in \PP\NN \times \PP(\NN \times \NN) \st \text{$Y$ is \glsref[wellord]{well-ordered} by $\wlt$}\} .\] Let $B = \{\OT(Y, \wlt) \st (Y, \wlt) \in A\}$. By above, $B$ is exactly the set of all countable \glspl{ordinal}. Let $\omega_1 = \sup B$. If $\omega_1 \in B$ then $\omega_1\osucc \notin B$, so $\omega_1\osucc$ is an uncountable \gls{ordinal}. In fact, $\omega_1$ is uncountable, since if $\omega_1$ is countable, then $\omega_1\osucc$ must be countable as well (countable set union with a single element is still countable).} \end{proof} \end{flashcard} \begin{notation*} \glssymboldefn{omegaone}{$\omega_1$}{$\omega_1$} $\omega_1$ in the proof is the least uncountable \gls{ordinal}. In general, when we write $\omega_1$, we mean the least uncountable \gls{ordinal} (which may be constructed as in the previous proof). \end{notation*} \begin{remark*} Every proper \gls{is} of $\omegaone$ is countable. If $\alpha_1, \alpha_2, \alpha_3, \ldots \in \omegaone$, then \[ \sup\{\alpha_1, \alpha_2, \ldots\} = \OT \left( \bigcup_{i \in \NN} \I_{\alpha_i} \right) \] is countable, hence not equal to $\omegaone$. \end{remark*} \begin{flashcard}[hartogs-lemma-thm] \begin{theorem}[Hartog's Lemma] \label{hartogs} \cloze{For any set $X$, there exists an \gls{ordinal} $\alpha$ such that $\alpha$ does not inject into $X$.} \end{theorem} \begin{proof} \cloze{Repeat the proof of \cref{uncountable_ordinal_existence} replacing $\NN$ with $X$.} \end{proof} \end{flashcard} \begin{flashcard}[hartogs-notation] \begin{notation*} \glssymboldefn{hartgamma}{$\gamma(X)$}{$\gamma(X)$} The least such $\alpha$ in \nameref{hartogs} is denoted by \cloze{$\gamma(X)$. For example $\gamma(\oomega) = \omegaone$.} \end{notation*} \end{flashcard} \[ 0, 1, 2, \ldots, \oomega, \ldots, \eps_0 = \omega^{\omega^{\omega^{\iddots}}}, \ldots, \eps_1, \ldots, \eps_{\eps_{\eps_{\ddots}}}, \ldots, \omegaone, \ldots, \omegaone \cdot 2, \ldots, \omega_2 = \gamma(\omegaone), \ldots \] \subsubsection*{Types of ordinals} \begin{flashcard}[successor-limit-defn] \begin{definition*}[Successor / limit ordinal] \glsnoundefn{succord}{successor ordinal}{successor ordinals} \glsnoundefn{limord}{limit ordinal}{limit ordinals} \cloze{Let $\alpha$ be an \gls{ordinal}, and consider whether $\alpha$ has a greatest element (i.e. if $X$ has \gls{ot} $\alpha$, does $X$ have a greatest element). \begin{enumerate}[If yes:] \item[If yes:] Let $\beta$ be the greatest element of $\I_\alpha$. Then $\I_\alpha = \I_\beta \cup \{\beta\}$. So $\alpha = \beta\osucc$, and $\alpha = (\sup \I_\alpha)\osucc$. We call such an $\alpha$ a \emph{successor ordinal}. \item[If no:] Then $\I_\alpha = \sup \I_\alpha$, i.e. $\alpha = \sup\{\beta \st \beta < \alpha\}$. We say $\alpha$ is a \emph{limit ordinal}. \end{enumerate}} \end{definition*} \end{flashcard} \begin{example*} $1 = 0\osucc$ is a \gls{succord}, $\oomega = \sup\{n \wlt \omega\}$ is a \gls{limord}, $\omega\osucc$ is a \gls{succord}, $\omegaone$ is a \gls{limord}. Weirdly, $0$ is a \gls{limord}. Some people prefer to add a special category for $0$, defining it as neither a \gls{succord} nor a \gls{limord}. \end{example*} \subsubsection*{Ordinal Arithmetic} \begin{flashcard}[ordinal-addition-defn] \begin{definition*}[Ordinal addition] \glssymboldefn{opl}{$+$}{$+$} \glsnoundefn{ordadd}{ordinal addition}{N/A} \glsnoundefn{indadd}{inductive addition}{N/A} \cloze{We define $\alpha + \beta$ for $\alpha, \beta$ \glspl{ordinal} by recursion on $\beta$ with $\alpha$ fixed. We define: \begin{enumerate}[$\beta \neq 0$ limit:] \item[$\beta = 0$:] $\alpha + 0 = \alpha$, \item[$\beta = \gamma\osucc$:] $\alpha + \gamma\osucc = (\alpha + \gamma)\osucc$, \item[$\beta \neq 0$ {\glsref[limord]{limit}}:] $\alpha + \beta = \sup\{\alpha + \gamma \st \gamma < \beta\}$. \end{enumerate}} \end{definition*} \end{flashcard} \begin{remark*} Technically, we fix $\alpha, \beta$ and define $\alpha + \gamma$ for all $\gamma \le \beta$ by \nameref{recursion} as above. We do this for all $\beta$. This gives a well-defined `$+$' by uniqueness in the \nameref{recursion}. Similarly, we can prove things by induction: Let $p(\alpha)$ be a statement for each \gls{ordinal} $\alpha$. Then \[ (\forall \alpha) ((\forall \beta)((\beta \wlt \alpha) \implies p(\beta)) \implies p(\alpha)) \implies (\forall \alpha) p(\alpha) \] If not, then there exists $\alpha$ with $p(\alpha)$ false. Then there exists least such $\alpha$ ($\{\beta \wle \alpha \st p(\beta) \text{ false}\} \neq \emptyset$). Then $p(\beta)$ is true for all $\beta \wlt \alpha$. By assumption, $p(\alpha)$ is true, \contradiction. \end{remark*} \begin{example*} For any $\alpha$, $\alpha \opl 1 = \alpha \opl 0\osucc = (\alpha \opl 0)\osucc = \alpha\osucc$. If $m \wlt \oomega$, then we have $m \opl 0 = m$ and for $n \wlt \omega$, \[ m \opl (n \opl 1) = m + \opl n\osucc = (m \opl n)\osucc = (m + n) + 1 = m + n + 1 \] So on $\oomega$, \gls{ordadd} is the usual addition. More examples: \begin{align*} \oomega \opl 2 &= \oomega \opl 1\osucc = (\oomega \opl 1)\osucc = \oomega\osucc\osucc \\ \oomega \opl \oomega &= \sup\{\oomega \opl n \st n \wlt \oomega\} = \sup\{\oomega, \oomega \opl 1, \oomega \opl 2, \ldots\} \\ 1 \opl \oomega &= \sup\{1 \opl n \st n \wlt \oomega\} = \sup\{1, 2, 3, \ldots\} = \oomega \neq \oomega \opl 1 \end{align*} So `$\opl$' is not commutative. \end{example*} \begin{flashcard}[ordadd-ineq-prop] \begin{proposition} \label{ordadd_ineq} $\forall \alpha, \beta, \gamma$ \glspl{ordinal}, $\beta \wle \gamma \implies \cloze{\alpha \opl \beta \wle \alpha \opl \gamma}$. \end{proposition} \begin{proof} \cloze{We prove this by \gls{induction} on $\gamma$ (with $\alpha, \beta$ fixed). \begin{enumerate}[$\gamma\neq 0$ limit:] \item[$\gamma = 0$:] If $\beta \wle \gamma$, then $\beta = 0$, so result is true. \item[$\gamma = \delta\osucc$] If $\beta \wle \gamma$, then either $\beta = \gamma$ and we're done or $\beta \wle \delta$ and so $\alpha \opl \beta \wle \alpha + \delta < (\alpha + \delta)\osucc = \alpha + \delta\osucc = \alpha + \gamma$. \item[$\gamma \neq 0$ {\glsref[limord]{limit}}] If $\beta \wle \gamma$, then without loss of generality $\beta \wlt \gamma$, so $\alpha \opl \beta \wle \sup\{\alpha \opl \delta \st \delta \wlt \gamma\} = \alpha \opl \gamma$. \qedhere \end{enumerate} } \end{proof} \end{flashcard} \begin{remark*} From \cref{ordadd_ineq}, we get $\beta \wlt \gamma \implies \alpha \opl \beta \wlt \alpha \opl \gamma$. Indeed, \[ \alpha \opl \beta \wlt (\alpha \opl \beta)\osucc = \alpha \opl \beta\osucc \wle \alpha \opl \gamma .\] Note that $1 \wlt 2$ but $1 \opl \oomega = 2 + \oomega = \oomega$, the proposition is not true when the order is swapped. \end{remark*} \begin{flashcard}[ordadd-sup-lemma] \begin{lemma} Let $\alpha$ be an \gls{ordinal} and $S$ a nonempty set of \glspl{ordinal}. Then \[ \alpha + \sup S = \sup\{\alpha \opl \beta \st \beta \in S\} .\] \end{lemma} \begin{proof} \cloze{If $\beta \in S$, then $\alpha \opl \beta \wle \alpha \opl \sup S$ (by \cref{ordadd_ineq}). Hence \[ \sup\{\alpha \opl \beta \st \beta \in S\} \wle \alpha \opl \sup S .\] For the reverse inequality, consider two cases. If $S$ has a greatest element, $\beta$ say, then \[ \alpha \opl \sup S = \alpha \opl \beta .\] For all $\gamma \in S$, $\gamma \wle \beta$, so by \cref{ordadd_ineq}, $\alpha \opl \gamma \wle \alpha \opl \beta$. It follows that \[ \sup\{\alpha \opl \gamma \st \gamma \in S\} = \alpha \opl \beta .\] If $S$ has no greatest element, then $\lambda = \sup S$ is a $\neq 0$ \gls{limord} (if $\lambda = \gamma\osucc$ then $\gamma \wlt \lambda$, so there exists $\delta \in S$ with $\gamma \wlt \delta$, then $\lambda = \gamma\osucc \wle \delta$, so $\lambda \in S$, contradiction). So \[ \alpha \opl \sup S = \sup\{\alpha \opl \beta \st \beta \wlt \lambda\} \] by definition. If $\beta \wlt \gamma$, then there exists $\delta \in S$, $\beta \wlt \delta$. By \cref{ordadd_ineq}, $\alpha \opl \beta \le \alpha \opl \delta$. It follows that \[ \sup\{\alpha \opl \beta \st \beta \wlt \lambda\}\ wle \sup\{\alpha \opl \delta \st \delta \in S\} \qedhere \]} \end{proof} \end{flashcard} \begin{flashcard}[ordadd-assoc-prop] \begin{proposition} $\forall \alpha, \beta, \gamma$, $(\alpha \opl \beta) \opl \gamma = \alpha \opl (\beta \opl \gamma)$. \end{proposition} \begin{proof} \cloze{By induction on $\gamma$. \begin{enumerate}[$\gamma \neq 0$ limit:] \item[$\gamma = 0$:] $(\alpha \opl \beta) \opl 0 = \alpha \opl \beta = \alpha \opl (\beta \opl 0)$. \item[$\gamma = \delta\osucc$:] $(\alpha \opl \beta) \opl \delta\osucc = ((\alpha \opl \beta) \opl \delta)\osucc = (\alpha \opl (\beta \opl \delta))\osucc = \alpha \opl (\beta \opl \delta)\osucc = \alpha \opl (\beta \opl \gamma)$. \item[$\gamma \neq 0$ {\glsref[limord]{limit}}:] \phantom{} \\[-2.5\baselineskip] \begin{align*} (\alpha \opl \beta) \opl \gamma &= \sup\{(\alpha \opl \beta) \opl \delta \st \delta \wlt \gamma\} \\ &= \sup\{\alpha \opl (\beta \opl \delta) \st \delta \wlt \gamma\} \\ &= \alpha \opl \sup\{\beta \opl \delta \st \delta \wlt \gamma\} \\ &= \alpha \opl (\beta \opl \delta) \qedhere \end{align*} \end{enumerate} } \end{proof} \end{flashcard}