%! TEX root = LST.tex % vim: tw=50 % 30/01/2024 09AM \begin{remark*} \cref{wole_leq_or_geq} and \cref{wole_leq_geq_impl_eq} together show that $\wole$ is a \gls{linord} (\gls{lerefl}, \gls{leantisym}, \gls{ltrans} and \gls{letrich}), provided we identify \glsref[wellord]{well-ordered} sets that are \gls{ordisic} to each other. \end{remark*} \begin{notation*} \glssymboldefn{wolt}{$<$}{$<$} We introduce `$X \wolt Y$` to mean $X \wole Y$ and $X$ is not \gls{ordisic} to $Y$. So $X \wolt Y$ if and only if $X$ \gls{ordisic} to a proper \gls{is} of $Y$. \end{notation*} \vspace{-1em} \textbf{Question:} Do the \glsref[wellord]{well-ordered} sets form a set? If so, is it a \glsref[wellord]{well-ordered} set? First we construct new \glsref[wellord]{well-ordered} sets from old ones. `there's always another one': \begin{flashcard}[successor-ordinal-defn] \begin{definition*}[Successor ordinal] \glssymboldefn{succ}{$X^+$}{$X^+$} \cloze{Let $X$ be a \glsref[wellord]{well-ordered} set, fix $x_0 \notin X$, and set $X^+ = X \cup \{x_0\}$, which we \glsref[wellord]{well-order} by extending $\wlt$ on $X$ to $X^+$ by letting $x \wlt x_0$ for all $x \in X$. This is unique up to \gls{ordisism} and $X \wlt X^+$.} \end{definition*} \end{flashcard} \vspace{-1em} \textbf{Upper bounds:} Given a set $\{X_i \st i \in I\}$ of \glsref[wellord]{well-ordered} sets, we seek a \glsref[wellord]{well-ordered} set $X$ such that $X_i \wole X$ for all $i \in I$. \begin{flashcard}[extends-defn] \begin{definition*}[Extends] \glsverbdefn{extends}{extends}{extends} \cloze{Given \glsref[wellord]{well-ordered} sets $(X, \wlt_X)$ and $(Y, \wlt_Y)$, say $Y$ \emph{extends} $X$ if $X \subset Y$, $\wlt_X$ is the restriction to $X$ of $\wlt_Y$ and $X$ is an \gls{is} of $Y$.} \end{definition*} \end{flashcard} \begin{flashcard}[nested-defn] \begin{definition*}[Nested] \glsadjdefn{nested}{nested}{well-ordered sets} \cloze{We say $\{X_i \st i \in I\}$ is \emph{nested} if $\forall i, j \in I$ either $X_j$ \gls{extends} $X_i$ or $X_i$ \gls{extends} $X_j$.} \end{definition*} \end{flashcard} \begin{flashcard}[wellord-union-prop] \begin{proposition} \label{wellord_union} Let $\{X_i \st i \in I\}$ be a \gls{nested} set of \glsref[wellord]{well-ordered} sets. Then there exists a \glsref[wellord]{well-ordered} set $X$ such that $X_i \wole X$ for all $i \in I$. \end{proposition} \begin{proof} \cloze{Let $X = \bigcup_{i \in I} X_i$ and define $\wlt$ on $X$ as follows: $x \wlt y$ if and only if $\exists i \in I$ such that $x, y \in X_i$ and $x \wlt_i y$ where $\wlt_i$ is the \gls{wellord} of $X_i$. Since the $X_i$ are \gls{nested}, this is well-defined, is a linear order and each $X_i$ is an \gls{is} of $X$. Given $S \subset X$, $S \neq \emptyset$, since $S = \bigcup_{i \in I} (S \cap X_i)$, there exists $i \in I$ such that $S \cap X_i \neq \emptyset$. Let $x$ be a \gls{leastel} of $S \cap X_i$ (since $X_i$ is \glsref[wellord]{well-ordered}). Then $x$ is a \gls{leastel} of $S$ since $X_i$ is an \gls{is} of $X$.} \end{proof} \end{flashcard} \begin{remark*} \cref{wellord_union} holds even if the $X_i$ are not \gls{nested} (see \cref{sec5}). \end{remark*} \subsubsection*{Ordinals} \begin{flashcard}[ordinal-defn] \begin{definition*}[Ordinal] \glsnoundefn{ordinal}{ordinal}{ordinals} \cloze{An \emph{ordinal} is a \glsref[wellord]{well-ordered} set but we consider two ordinals the same if they're \gls{ordisic}.} \end{definition*} \end{flashcard} \begin{remark*} A formal definition will be given in \cref{sec5}. You could think of the term `ordinal' as a shorthand (for now). \end{remark*} \begin{flashcard}[order-type-defn] \begin{definition*}[Order type] \glspropdefn{ot}{order type}{well-ordered set} \cloze{The \emph{order type} of a \glsref[wellord]{well-ordered} set $X$ is the unique \gls{ordinal} $\alpha$ \gls{ordisic} to $X$. Write `$\alpha$ is the order type (O.T.) of $X$`.} \end{definition*} \end{flashcard} \begin{example*} For $k \in \NN \cup \{0\}$, we let $k$ be the \gls{ot} of a \glsref[wellord]{well-ordered} set of size $k$ (this is unique). Let $\omega$ be the \gls{ot} of $\NN$ (also the \gls{ot} of $\NN \cup \{0\}$). The set $A = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$ in $\QQ$ also has \gls{ot} $\omega$. \end{example*} \begin{flashcard}[omega-notation] \begin{notation*} \glssymboldefn{oomega}{$\omega$}{$\omega$} We write $\omega$ for \cloze{the \gls{ot} of any set which is \gls{ordisic} to $\NN$}. \end{notation*} \end{flashcard} \begin{notation*} \glssymboldefn{ole}{$\le$}{$\le$} \glssymboldefn{olt}{$<$}{$<$} \glssymboldefn{osucc}{$\alpha^+$}{$\alpha^+$} For \glspl{ordinal} $\alpha, \beta$ we write $\alpha \ole \beta$ is $X \wole Y$ where $X$ is a \glsref[wellord]{well-ordered} set of \gls{ot} $\alpha$, $Y$ is a \glsref[wellord]{well-ordered} set of \gls{ot} $\beta$. This is well-defined. We also write $\alpha \olt \beta$ is $X \wolt Y$. We let $\alpha\osucc$ be the \gls{ot} of $X\wsucc$. \end{notation*} \begin{remark*} $\le$ is a \gls{linord}; if $\alpha \ole \beta$ and $\beta \ole \alpha$ then $\alpha = \beta$. \end{remark*} \begin{flashcard}[I-alpha-ot-thm] \begin{theorem} \label{I_alpha_ot} Let $\alpha$ be an \gls{ordinal}. The \glspl{ordinal} $\olt \alpha$ form a \glsref[wellord]{well-ordered} set of \gls{ot} $\alpha$. \end{theorem} \begin{proof} \cloze{Fix a \glsref[wellord]{well-ordered} set $X$ with \gls{ot} $\alpha$. Let \[ \tilde{X} = \{Y \subset X \st \text{$Y$ is a proper \gls{is} of $X$}\} .\] Then $\wolt$ (defined for \glsref[wellord]{well-ordered} sets) is a \gls{linord} on $\tilde{X}$. Note that $x \mapsto \I_x : X \to \tilde{X}$ is an \gls{ordisism}. So $\tilde{X}$ is a \glsref[wellord]{well-ordered} set of \gls{ot} $\alpha$. So \[ \{\OT(Y) \st Y \in \tilde{X}\} \] is the set of \glspl{ordinal} $\olt \alpha$ and $Y \mapsto \OT(Y)$ is an \gls{ordisism} from $\tilde{X}$ to this set.} \end{proof} \end{flashcard} \begin{flashcard}[I-alpha-notation] \begin{notation*} \glssymboldefn{oI}{$I_\alpha$}{$I_\alpha$} $\I_\alpha = \cloze{\{\beta \st \beta < \alpha\}}$ `A nice example of a \glsref[wellord]{well-ordered} set of \gls{ot} $\alpha$'. \end{notation*} \end{flashcard} \begin{flashcard}[ordinals-wellord-defn] \begin{proposition} \label{ordinals_wellord} A non empty set $S$ of \glspl{ordinal} has a \gls{leastel}. \end{proposition} \begin{proof} \cloze{Pick $\alpha \in S$. If $\alpha$ is not a \gls{leastel} of $S$, then $S \cap \oI_\alpha \neq \emptyset$, and hence (by \cref{I_alpha_ot}) it has a \gls{leastel} $\beta$. Then $\beta$ is a \gls{leastel} of $S$: if $\gamma \in S$, $\gamma \olt \alpha$, then $\gamma \in \oI_\alpha \cap S$, and so $\beta \ole \gamma$.} \end{proof} \end{flashcard} \begin{flashcard}[burali-forti-paradox-thm] \begin{theorem}[Burati-Forti paradox] \label{burati_forti} \cloze{The \glspl{ordinal} do not form a set.} \end{theorem} \begin{proof} \cloze{Assume otherwise and let $X$ be the set of \glspl{ordinal}. Then $X$ is a \glsref[wellord]{well-ordered} set by \cref{ordinals_wellord} (and earlier results). Let $\alpha$ be the \gls{ot} of $X$. Then $X$ is \gls{ordisic} to $\oI_\alpha$, which is a proper \gls{is} of $X$, \contradiction.} \end{proof} \end{flashcard} \begin{remark*} Let $S = \{\alpha_i \st i \in I\}$ be a set of \glspl{ordinal}. Then by \cref{wellord_union} the \gls{nested} set $\{\oI_{\alpha_i} \st i \in I\}$ has an upper bound. So there exists an \gls{ordinal} $\alpha$ such that $\alpha_i \wle \alpha$ for all $i \in I$. By \cref{I_alpha_ot} we can take the least such $\alpha$. We take the \gls{leastel} of \[ \{\beta \in \oI_\alpha \cup \{\alpha\} \st \forall i \in I, \alpha \ole \beta\} .\] We denote by $\sup S$ the least upper bound on $S$. Note if $\alpha = \sup S$ then $\oI_\alpha = \bigcup_{i \in I} \oI_\alpha$. \end{remark*} \subsubsection*{A list of some ordinals} \[ 0, 1, 2, 3, \ldots, \oomega, \oomega, \oomega\osucc = \oomega + 1, \oomega + 2, \oomega + 3, \ldots, \] \[ \oomega + \oomega = \oomega \cdot 2 = \sup \{\oomega + n \st n \olt \oomega\}, \oomega \cdot 2 + 1, \oomega \cdot 2 + 2, \ldots, \oomega \cdot 3, \ldots, \oomega \cdot 4, \ldots\] \[ \oomega \cdot \oomega = \oomega^2 = \{\oomega \cdot n \st n \olt \oomega\}, \oomega^2 + 1, \oomega^2 + 2, \ldots \oomega^2 + \oomega, \ldots, \oomega^2 + \oomega \cdot 2, \ldots, \oomega^2 + \oomega \cdot 3, \ldots \] \[ \oomega^2 \cdot 2, \ldots, \oomega^2 \cdot 3, \ldots, \oomega^3, \ldots, \oomega^4, \ldots, \oomega^\oomega = \sup\{\oomega^n \st n \olt \oomega\}, \oomega^\oomega + 1, \ldots \] \[ \oomega^\oomega + \oomega, \ldots, \oomega^\oomega + \oomega^2, \ldots, \oomega^\oomega \cdot 2, \ldots, \oomega^\oomega \cdot \oomega = \oomega^{\oomega + 1}, \ldots, \oomega^{\oomega + 2}, \ldots, \oomega^{\oomega \cdot 2}, \ldots, \oomega^{\oomega \cdot 3}, \ldots \] \[ \oomega^{\oomega^2}, \ldots, \oomega^{\oomega^3}, \ldots, \oomega^{\oomega^\oomega}, \ldots, \oomega^{\oomega^{\oomega^\oomega}}, \ldots, \eps_0 = \sup\{\ub{\oomega^{\oomega^{\iddots^\oomega}}}_{n} \st n \olt \omega\}, \ldots \] \[ \eps_1, \ldots, \eps_2, \ldots, \eps_\oomega, \ldots, \eps_{\eps_0}, \ldots, \eps_{\eps_{\eps_0}}, \ldots \] Remarkably, all of these are countable! This can be seen by checking that each of them is a countable supremum of countable \glspl{ordinal}, hence must be countable.