%! TEX root = LST.tex % vim: tw=50 % 27/01/2024 09AM \begin{flashcard}[ordisom-is-unique-prop] \begin{proposition} Let $X$, $Y$ be \glsref[wellord]{well-ordered} sets that are \gls{ordisic}. Then there exists unique \gls{ordisism} $X \to Y$. \end{proposition} \fcscrap{ \begin{remark*} Not true in general for \glsref[linord]{linearly ordered} sets. For example for $\ZZ \to \ZZ$ we can take $n \mapsto n$ or $n \mapsto n + 17$, and for $[0, \infty) \to [0, \infty)$ can take $x \mapsto x$ or $x \mapsto x^2$. \end{remark*} } \begin{proof} \cloze{Let $f, g : X \to Y$ be \glspl{ordisism}. We prove that $\forall x \in X$, $f(x) = g(x)$ by \gls{induction}. Let $x \in X$. Assume $f(y) = g(y)$ for all $y \wlt x$ (\gls{induction} hypothesis). By \cref{ordisism_min_lemma}, \begin{align*} f(x) &= \min(Y \setminus \{f(y) \st y \wlt x\}) \\ g(x) &= \min(Y \setminus \{g(y) \st y \wlt x\}) \end{align*} By \gls{induction} hypothesis, \[ \{f(y) \st y \wlt x\} = \{g(y) \st y \wlt x\} .\] So $f(x) = g(x)$.} \end{proof} \end{flashcard} \begin{remark*} \glsref[induction]{Induction} proves things. We need a tool to construct things. This will be \emph{recursion}. \end{remark*} \begin{note*} A function from a set $X$ to a set $Y$ is a subset $f$ of $X \times Y$ such that: \begin{enumerate}[(i)] \item $\forall x \in X$, $\exists y \in Y$ such that $(x, y) \in f$. \item $\forall x \in X$, $\forall y, z \in Y$ $((x, y) \in f \wedge (x, z) \in f) \implies (y = z)$. \end{enumerate} Of course we write `$y = f(x)$' instead of `$(x, y) \in f$'. Note that $f \in \PP(X \times Y)$. For $Z \subset X$, the restriction of $f$ to $Z$ is $f|_Z = \{(x, y) \in f \st x \in Z\}$. $f|_Z$ is a function $Z \to Y$, so $f|_Z \subset Z \times Y \subset X \times Y$, so $f|_Z \in \PP(X \times Y)$. \end{note*} \begin{flashcard}[definition-by-recursion-thm] \begin{theorem}[Definition by recursion] \label{recursion} \cloze{Let $X$ be a \glsref[wellord]{well-ordered} set and $Y$ be an arbitrary set. Then for any function $G : \PP(X \times Y) \to Y$ there is a unique function $f : X \to Y$ such that $f(x) = G(f|_{\I_x})$ for every $x \in X$.} \end{theorem} \begin{proof} \cloze{\textbf{Uniqueness:} Assume $f, g$ both satisfy the conclusion. Given $x \in X$, if $f(y) = g(y)$ for all $y \wlt x$, then $f(x) = G(f|_{\I_x}) = G(g|_{\I_x}) = g(x)$. So by induction, $f = g$. \textbf{Existence:} Say $h$ is an \emph{attempt} if $h$ is a function $I \to Y$ for some \gls{is} $I$ of $X$ such that $\forall x \in I$, $h(x) = G(h|_{\I_x})$ (note $\I_x \subset I$). Let $h, h'$ be attempts. We show that $\forall x \in X$, if $x \in \dom(h) \cap \dom(h')$, then $h(x) = h'(x)$. Here, $\dom(h)$ is the domain of $h$, i.e. $I$ as above. Fix $x \in \dom(h) \cap \dom(h')$ and assume $h(y) = h'(y)$ for every $y \wlt x$ (note $y \wlt x$ implies $y \in \dom(h) \cap \dom(h')$). Then $h|_{\I_x} = h'|_{\I_x}$, so $h(x) = G(h|_{\I_x}) = G(h'|_{\I_x}) = h'(x)$. Then done by induction. What we have left to show for existence is that $\forall x \in X$ there exists an attempt $h$ such that $x \in \dom h$. We prove this by induction. Fix $x \in X$ and assume that for $y \wlt x$ there is an attempt defined at $y$, and let $h_y$ be the unique attempt with domain $\{z \in X \st z \wle y\} = \I_y \cup \{y\}$. Then $h = \bigcup_{y \wlt x} h_y$ is a well-defined function on $\I_x$ and it is an attempt since fo$ y \wlt x$, $h(y) = h_y(y) = G(h_y|_{\I_x}) = G(h|_{\I_y})$. Then $h \cup \{(x, G(h))\}$ is an attempt with domain $\I_x \cup \{x\}$. Finally, define $f : X \to Y$, $f(x) = h(x)$ where $h$ is any attempt defined at $x$. This is well-defined by above and $f(x) = h(x) = G(h|_{\I_x}) = G(f|_{\I_x})$.} \end{proof} \end{flashcard} \begin{flashcard}[subset-collapse-prop] \begin{proposition}[Subset collapse] \label{subset_collapse} \cloze{Let $Y$ be a \glsref[wellord]{well-ordered} set and $X \subset Y$. Then $X$ is \gls{ordisic} to a unique \gls{is} of $Y$.} \end{proposition} \begin{proof} \cloze{Without loss of generality, $X \neq \emptyset$. \textbf{Uniqueness:} Assume $f : X \to I$ is an \gls{ordisism} where $I$ is an \gls{is} of $Y$. By \cref{ordisism_min_lemma}, $f(x) = \min(Y \setminus \{f(y) \st y \wlt x, y \in X\})$. So by induction, $f$ and hence $I$ are uniquely determined. \textbf{Existence:} Fix $y_0 \in Y$. By \cref{recursion}, there's a function $f : X \to Y$ such that \[ f(x) = \begin{cases} \min(Y \setminus \{f(y) \st y \in X, y \wlt x\}) & \text{if it exists} \\ y_0 & \text{otherwise} \end{cases} \] We first prove that the `otherwise' clause never occurs. We prove that $\forall x \in X$, $f(x) \wle x$. If $\forall y \in X$, $y \wlt x$ implies $f(y) \wle y$, then $x \in Y\setminus \{f(y) \st y \in X, y \wlt x\}$, so $f(x) \wle x$. Done by induction. This also shows that $f$ is injective. $f$ order preserving: Given $y \wlt x$ in $X$, $f(x) \in Y \setminus \{f(z) \st z \in X, z \wlt x\} \subset Y \setminus \{f(z) \st z \in X, z \wlt y\}$. So $f(y) \wle f(x)$, and hence $f(y) \wlt f(x)$ by injectivity. $\Im f$ is an \gls{is} of $Y$: Assume $a \in Y \setminus \Im f$. We show $f(x) \wlt a$ for all $x \in X$. If $f(y) < a$ for all $y \in X$, $y < x$, then $a \in Y \setminus \{f(y) \st y \in X, y \wlt x\}$, so $f(x) \wle a$ and hence $f(x) \wlt a$. Done by induction.} \end{proof} \end{flashcard} \begin{remark*} A \glsref[wellord]{well-ordered} set $X$ is not \gls{ordisic} to a proper \gls{is} of $X$ (by uniqueness). But $X$ is of course \gls{ordisic} to $X$. \end{remark*} \begin{notation*} \glssymboldefn{wole}{$\le$}{$\le$} Let $X$, $Y$ be \glsref[wellord]{well-ordered} sets. Write $X \wle Y$ if $X$ is \gls{ordisic} to an \gls{is} of $Y$. \end{notation*} \begin{example*} If $A = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots \right\} \cup \{1\}$. Then $\NN \wole A$. \end{example*} \begin{flashcard}[well-ordered-sets-form-a-well-order-thm] \begin{theorem} \label{wole_leq_or_geq} Let $X, Y$ be \glsref[wellord]{well-ordered} sets. Then $X \wole Y$ or $Y \wole X$. \end{theorem} \begin{proof} \cloze{Assume $Y \not\wole X$. Then $Y \neq \emptyset$ and we can fix $y_0 \in Y$. We recursively define $f : X \to Y$ by \[ f(x) = \begin{cases} \min(Y \setminus \{f(y) \st y \wlt x\}) & \text{if it exists} \\ y_0 & \text{otherwise} \end{cases} \] If the `otherwise' clause occurs, let $x$ be the least element of $X$ when this happens. Then $f(\I_x) = Y$ and as in \cref{subset_collapse}, $f$ is an \gls{ordisism} $\I_x \to Y$, which contradicts $Y \not \wole X$. So the `otherwise' clause never occurs. So as in proof of \cref{subset_collapse}, $f$ is an \gls{ordisism} to an \gls{is} of $Y$, i.e. $X \wole Y$.} \end{proof} \end{flashcard} \begin{flashcard}[wole-wole-implies-ordisic-prop] \begin{proposition} \label{wole_leq_geq_impl_eq} Let $X$, $Y$ be \glsref[wellord]{well-ordered} sets. If $X \wole Y$ and $Y \wole X$ then $X$ and $Y$ are \gls{ordisic}. \end{proposition} \begin{proof} \cloze{Let $f : X \to Y$, $g : Y \to X$ be \glspl{ordisism} onto \gls{is} of $Y$, $X$ respectively. Then $g \circ f$ is an \gls{ordisism} between $X$ and an \gls{ordisism} of $X$, so $g \circ f = \id_X$ by uniqueness in \cref{subset_collapse}. Similarly $f \circ g = \id_Y$.} \end{proof} \end{flashcard}