%! TEX root = LST.tex % vim: tw=50 % 25/01/2024 09AM \newpage \section{Well-ordering and ordinals} \label{sec2} \begin{flashcard}[linear-order-defn] \begin{definition*}[Linear order] \glsnoundefn{linord}{linear order}{N/A}% \glsadjdefn{lirref}{irreflexive}{order} \glsadjdefn{ltrans}{transitive}{order} \glsadjdefn{ltrich}{trichotomous}{order} \cloze{A \emph{linear order} of \emph{total order} on a set $X$ is a relation $<$ on $X$ that is: \begin{enumerate}[(i)] \item \emph{irreflexive}: $\forall x \in X$, $\neg (x < x)$. \item \emph{transitive}: $\forall x, y, z \in X$, $(x < y \wedge y < z) \implies (x < z)$. \item \emph{trichotomy}: $\forall x, y \in X$, $x < y$ or $x = y$ or $y < x$. \end{enumerate} } \end{definition*} \end{flashcard} \begin{remark*} In (iii) exactly one holds: for example, if $x < y$ and $y < x$, then $x < $ by (ii) which contradicts (i). \end{remark*} \begin{notation*} \glssymboldefn{linord}{$<$}{$<$} We say $X$ is \glsref[linord]{linearly ordered} by $<$, or simply say $X$ is a \glsref[linord]{linearly ordered} set. \end{notation*} \begin{example*} $\NN$, $\ZZ$, $\QQ$, $\RR$ with their usual order ($\NN = \{1, 2, 3, \ldots\}$). \end{example*} \begin{note*} If $X$ is a set of size $\ge 2$, then on $\PP X = \{Y \st Y \subset X\}$ (power set of $X$), defining $a \llt b$ to mean $a \subset b$, $a \neq b$ is not \gls{ltrich}. \end{note*} \begin{notation*} \glssymboldefn{leetc}{$\le$}{$\le$} If $X$ is \glsref[linord]{linearly ordered} by $\llt$, then we write $x \lgt y$ for $y \llt k$, $x \lle y$ for $x < y$ or $x = y$, and $x \lge y$ for $x > y$ or $x = y$. \end{notation*} \begin{note*} \glsadjdefn{lerefl}{reflexive}{order} \glsadjdefn{leantisym}{antisymmetric}{order} \glsadjdefn{lerans}{transitive}{order} \glsadjdefn{letrich}{trichotomous}{order} Note that $\lle$ is: \begin{enumerate} \item \emph{reflexive}: $\forall x \in X$, $x \lle x$. \item \emph{antisymmetric}: $\forall x, y \in X$, $(x \lle y \wedge y \lle x) \implies (x = y)$. \item \emph{transitive}: $\forall x, y, z \in X$, $(x \lle y \wedge y \lle z) \implies (x \lle z)$. \item \emph{trichotomous}: $\forall x, y \in X$, $x \le y$ or $y \le x$. \end{enumerate} \end{note*} \begin{note*} If $X$ is \glsref[linord]{linearly ordered} by $\llt$, then any $Y \subset X$ is \glsref[linord]{linearly ordered} by $\llt$ (more precisely, by the restriction of $\llt$ to $Y$). \end{note*} \begin{flashcard}[well-order-defn] \begin{definition*}[Well-ordering] \glsnoundefn{wellord}{well-ordering}{well-orderings} \glsnoundefn{leastel}{least element}{least elements} \cloze{A \emph{well-ordering} on a set $X$ is a \gls{linord} $\llt$ on $X$ such that every non-empty subset $X$ has a least element: $\forall S \subset X$, $S \neq \emptyset$ implies $\exists x \in S$ such that $\forall y \in S$, $x \le y$.} \end{definition*} \end{flashcard} \begin{note*} This least element is always unique by \gls{leantisym}. \end{note*} \begin{notation*} \glssymboldefn{wellord}{$<$}{$<$} Say $X$ is \emph{well-ordered} by $\llt$, or simply say $X$ is a \glsref[wellord]{well-ordered} set. \end{notation*} \begin{example*} $\NN$ with the usual \gls{linord} is a \gls{wellord}. $\ZZ, \QQ, \RR$ are not (they have no least element). $\{x \in \RR \st x \ge 0\}$ is not \glsref[wellord]{well-ordered}, because for example, $\{x \in \RR \st x > 0\}$ has no least element. \end{example*} \begin{note*} Every subset of a \glsref[wellord]{well-ordered} set is \glsref[wellord]{well-ordered}. We'll see that $\QQ$ has a rich collection of well-ordered subsets. \end{note*} \begin{flashcard}[order-iso-defn] \begin{definition*}[Order isomorphic] \glsadjdefn{ordisic}{order-isomorphic}{linearly ordered sets} \glsnoundefn{ordisism}{order-isomorphism}{order-isomorphisms} \cloze{Say \glsref[linord]{linearly ordered} sets $X, Y$ are \emph{order-isomorphic} if there exists a bijection $f : X \to Y$ which is \emph{order-preserving}: $\forall x \llt y$ in $X$, $f(x) \llt f(y)$. Such an $f$ is called an \emph{order-isomorphism}. Then $f^{-1}$ is also an order-isomorphism.} \end{definition*} \end{flashcard} \begin{note*} If \glsref[linord]{linearly ordered} sets $X, Y$ are \gls{ordisic} and $X$ is \glsref[wellord]{well-ordered}, then so is $Y$. \end{note*} \begin{example*} $\NN$ and $\QQ$ are not \gls{ordisic}. $\QQ$ and $\QQ \setminus \{0\}$ are \gls{ordisic} (see Numbers \& Sets Example Sheet). $A = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots \right\} = \left\{ \frac{n}{n + 1} \st n \in \NN \right\}$ is \gls{ordisic} to $\NN$ ($n \mapsto \frac{n}{n + 1}$). $B = A \cup \{1\}$ is \glsref[wellord]{well-ordered}, but not \gls{ordisic} to $\NN$ (it has a greatest element). $C = A \cup \{2\}$ is \gls{ordisic} to $B$. $D = A \cup (A + 1) = A \cup \left\{ \frac{3}{2}, \frac{5}{3}, \frac{7}{4}, \ldots \right\}$ is \glsref[wellord]{well-ordered}, but not \gls{ordisic} to $A$ or $B$. \end{example*} \begin{flashcard}[initial-segment-defn] \begin{definition*}[Initial segment] \glsnoundefn{is}{initial segment}{initial segments} \cloze{A subset $I$ of a \glsref[linord]{linearly ordered} set $X$ is an \emph{initial segment} (i.s.) of $X$ is $x \in I, y < x \implies y \in I$ for any $x, y \in X$.} \end{definition*} \end{flashcard} \begin{example*} $\{1, 2, 3, 4\}$ is an \gls{is} of $\NN$. $\{1, 2, 3, 5\}$ is not. $[0, 1]$ is an \gls{is} of $\{x \in \RR \st x \ge 0\}$. \end{example*} \begin{flashcard}[initial-segment-notation] \begin{notation*} \glssymboldefn{Ix}{$I_x$}{$I_x$} In general, for $x \in X$, $I_x = \cloze{\{y \in X \st y < x\}}$ is an \emph{is} of $X$ by \gls{ltrans}. \fcscrap{$I_x$ is a proper \gls{is} of $X$ (meaning $I_x \neq X$), because it does not contain $x$.} \end{notation*} \end{flashcard} \begin{note*} In general, not every proper \gls{is} is of this form. For example, $(-\infty, 1]$ is a proper \gls{is} of $\RR$, but $(-\infty, 1] \neq \I_x$ for any $x \in \RR$. \end{note*} \begin{remark*} If $X$ is \glsref[wellord]{well-ordered} and $I$ is a proper \gls{is} of $X$, then $I = \I_x$ where $x$ is the \gls{leastel} of $X \setminus I$. Indeed, if $y \in \I_x$ then $y < x$, so $y \in I$ by choice of $x$. If $y \in I$ and $y \ge x$, then $x \in I$ as $I$ is an \gls{is}, contradiction. So $y < x$, i.e. $y \in \I_x$. \end{remark*} \begin{lemma} \label{ordisism_min_lemma} Let $X, Y$ be a \glsref[wellord]{well-ordered} set, $I$ an \gls{is} of $Y$ and $f : X \to Y$ an \gls{ordisism} between $X$ and $I$. Then for each $x \in X$, $f(x)$ is the \gls{leastel} of $Y \setminus \{f(y) \st y < x\}$. \end{lemma} \begin{proof} The set $A = Y \setminus \{f(y) \st y < x\}$ is $\neq\emptyset$ since $f(x) \in A$. Let $a$ be the \gls{leastel} of $A$. Then $a \le f(x)$ and $f(x) \in I$, and so $a \in I$. Thus $a = f(x)$ for some $z \in X$. Note that $z > x$ implies $a = f(z) > f(x)$, contradiction. So $z \wle x$. If $z < x$, then $a = f(z) \in \{f(y) \st y < x\}$, \contradiction as $a \in A$. So $z = x$ and $a = f(z) = f(x)$. \end{proof} \begin{flashcard}[proof-by-induction-prop] \begin{proposition}[Proof by induction] \glsnoundefn{induction}{induction}{induction} \cloze{Let $X$ be a \glsref[wellord]{well-ordered} set and $S \subset X$ satisfying the following for every $x \in X$: $\forall y < x$, $y \in S$ implies $x \in S$. Then $S = X$.} \end{proposition} \fcscrap{ \begin{note*} Assume $S$ is given by a property $p$: $S = \{x \in X \st p(x)\}$. The above can be written as \[ (\forall x \in X)((\forall y < x, p(y)) \implies p(x)) \implies (\forall x \in X, p(x)) \] (base case is included since the left hand side will be vacuously true for the \gls{leastel}). \end{note*} } \begin{proof} \cloze{If $S \neq X$, then $X \setminus S$ has a \gls{leastel} $x$, say. If $y \wlt x$, then $y \in S$ by choice of $x$. By the assumption on $S$, $x \in S$, contradiction.} \end{proof} \end{flashcard}