%! TEX root = LST.tex % vim: tw=50 % 23/01/2024 09AM \begin{flashcard}[soundness-thm] \begin{proposition}[Soundness theorem] \label{soundness} \cloze{Given $S \subset \propL$, $t \in \propL$, if $S \synentails t$, then $S \sementails t$.} \end{proposition} \begin{proof} \cloze{Let $t_1, t_2, \ldots, t_n = t$ be a \gls{pproof} of $t$ from $S$. Let $\propv$ be a \gls{pmodel} of $S$. We need: $\propv(t) = 1$. We prove by induction that $\propv(t_i) = 1$ for all $i$. \begin{enumerate}[\textbf{Case }\bfseries 1:] \item $t_i$ is an \gls{axiom}. Then $\propv(t_i) = 1$ since \glspl{axiom} are \glspl{taut}. \item $t_i$ is a premise. Then $\propv(t_i) = 1$ since $\propv$ is a \gls{pmodel} of $S$. \item $\exists j, k < i$ such that $t_k = (t_j \impl t_i)$. Then, by the induction hypothesis, $\propv(t_j) = \propv(t_j \impl t_i) = 1$ and hence $\propv(t_i) = 1$. \end{enumerate} } \end{proof} \end{flashcard} \begin{flashcard}[consistent-set-defn] \begin{definition*}[Consistent] \glsadjdefn{cons}{consistent}{set}% \glsadjdefn{incons}{inconsistent}{set} \cloze{Given $S \subset \propL$, say $S$ is \emph{inconsistent} if $S \synentails \false$ and $S$ is \emph{consistent} if $S \not\synentails \false$.} \end{definition*} \end{flashcard} \vspace{-1em} Special case of adequacy: if $S \sementails \false$ then $S \synentails \false$, i.e. if $S$ has no \gls{pmodel}, then $S$ is \gls{incons}, or equivalently, if $S$ is \gls{cons}, then $S$ has a \gls{pmodel}. \begin{flashcard}[model-existence-lemma] \begin{theorem}[Model Existence Lemma] \label{model_existence_lemma} \cloze{Let $S \subset \propL$. If $S$ is \gls{cons}, then $S$ has a \gls{pmodel}.} \end{theorem} \cloze{\textbf{Idea:} If $S \synentails t$, then $S \sementails t$ by \nameref{soundness}. So try \[ \propv(t) = \begin{cases} 1 & \text{if $S \synentails t$} \\ 0 & \text{otherwise} \end{cases} \] This doesn't work because it's possible to have $t \in \propL$ such that $S \not\synentails t$ and $S \not\synentails \pnot t$. For example, $S = \emptyset$, $t = (p_1 \impl \false)$. We try to enlarge $S$ to $\ol{S}$ such that $\ol{S}$ is \gls{cons} and $\forall t \in \propL$, $t$ or $\pnot t$ is in $\ol{S}$.} \begin{proof} \cloze{We assume $\propP$ is countable (we'll do the general case in \cref{sec3}). Then $\propLnum{1}$ is countable and hence each $\propLnum{n}$ is countable by induction. Thus $\propL$ is countable. Enumerate $\propL$: $t_1, t_2, t_3, \ldots$. Note: if $S \subset \propL$ is \gls{cons} and $t \in L$, then one of $S \cup \{t\}$ or $S \cup \{\pnot t\}$ is \gls{cons}. If not, then $S \cup \{t\} \synentails \false$ and $S \cup \{\pnot t\} \synentails \false$. By the \nameref{ded_thm}, $S \synentails \pnot t$, and so $S \synentails \false$ \contradiction. So now start with a \gls{cons} $S \subset \propL$. Set $S_0 = S$. Using the comment above, we let $S_1$ be either $S_1$ be either $S_0 \cup \{t_1\}$ or $S_1 \cup \{\pnot t_2\}$, where we pick one such that $S_1$ is \gls{cons}. Similarly, let $S_2$ be either $S_1 \cup \{t_2\}$ or $S_1 \cup \{\pnot t_2\}$, where we pick one such that $S_2$ is \gls{cons}. Continue inductively and set $\ol{S} = \bigcup_{n = 0}^\infty S_n$. Then $\forall t \in \propL$, either $t \in \ol{S}$ or $\pnot t \in \ol{S}$. Also, $\ol{S}$ is \gls{cons} since \glspl{pproof} are finite, so if $\ol{S} \synentails \false$, then $\exists n$ such that $S_n \synentails \false$ \contradiction. It follows that $\ol{S}$ is \emph{deductively closed}: if $\ol{S} \synentails t$, then $t \in \ol{S}$. If not, then $\pnot t \in \ol{S}$, so $\ol{S} \synentails \pnot t$ and also $\ol{S} \synentails t$ and hence $\ol{S} \synentails \false$ (\gls{MP}) \contradiction. We now define $\propv : \propL \to \{0, 1\}$ by \[ \propv(t) = \begin{cases} 1 & t \in \ol{S} \\ 0 & t \notin \ol{S} \end{cases} \] \textbf{Claim:} $\propv$ is a \gls{vtion}. Then $\propv$ is a \gls{pmodel} of $S$, and we are done. Firstly: $\propv(\false) = 0$ since $\propv \notin \ol{S}$ s $\ol{S}$ is \gls{cons}. Now we check $\propv(p \impl q)$ for $p, q \in \propL$. \begin{enumerate}[\textbf{Case }\bfseries 1:] \item $\propv(p) = 1$, $\propv(q) = 0$. We need $(p \impl q) \notin \ol{S}$. By assumption, $p \in \ol{S}$, $q \notin \ol{S}$, so $\pnot q \in \ol{S}$. If $(p \impl q) \in \ol{S}$, then by (\gls{MP}), $\ol{S} \synentails q$ and hence $q \in \ol{S}$ ($\ol{S}$ deductively closed) \contradiction (as $\pnot q \in \ol{S}$, so $\ol{S} \synentails \false$). \item $\propv(q) = 1$. We need $(p \impl q) \in \ol{S}$. We have $q \in \ol{S}$. Write down \begin{align*} &q &&\text{(premise)} \\ &q \impl (p \impl q) &&\text{(A1)} \\ &(p \impl q) &&\text{(\gls{MP})} \end{align*} so $\ol{S} \synentails (p \impl q)$ and hence $(p \impl q) \in \ol{S}$. \item $\propv(p) = 0$. We need $(p \impl q) \in \ol{S}$, or equivalently $\ol{S} \synentails (p \impl q)$ (since $\ol{S}$ is deductively closed). Enough to show that $\ol{S} \cup \{p\} \synentails q$ (by \nameref{ded_thm}). Since $\propv(p) = 0$, $p \notin \ol{S}$, and hence $\pnot p \in \ol{S}$. Now obtain a proof of $q$ from $\ol{S} \cup \{p\}$ as follows: \begin{align*} &p &&\text{(premise)} \\ &\pnot p &&\text{(premise)} \\ &\false &&\text{(\gls{MP})} \\ &\false \impl (\pnot q \impl \false) &&\text{(A1)} \\ &\pnot \pnot q &&\text{(\gls{MP})} \\ &\pnot q \pnot q \impl q &&\text{(A3)} \\ &q &&\text{(\gls{MP})} \end{align*} \end{enumerate} } \end{proof} \end{flashcard} \begin{flashcard}[adequacy-thm] \begin{corollary}[Adequacy] \label{adeq} \cloze{Let $S \subset \propL$, $t \in \propL$. If $S \sementails t$ then $S \synentails t$.} \end{corollary} \begin{proof} \cloze{$S \cup \{\pnot t\} \sementails \false$, so by \cref{model_existence_lemma}, $S \cup \{\pnot t\} \synentails \false$. Then by the \nameref{ded_thm}, $S \synentails \pnot \pnot t$. Take a \gls{pproof} of this, and add the lines: \begin{align*} &\pnot \pnot t \implies t &&\text{(A3)} \\ &t &&\text{(\gls{MP})} \end{align*} So $S \synentails t$.} \end{proof} \end{flashcard} \begin{flashcard}[completeness-thm] \begin{theorem}[Completeness Theorem] \label{pcompleteness} \cloze{Let $S \subset \propL$, $t \in \propL$. Then $S \sementails t$ if and only if $S \synentails t$.} \end{theorem} \begin{proof} \cloze{ \phantom{} \begin{enumerate} \item[$\Rightarrow$] \nameref{soundness} \item[$\Leftarrow$] \nameref{adeq} \qedhere \end{enumerate} } \end{proof} \end{flashcard} \begin{corollary}[Compactness Theorem] \label{comp_thm} Let $S \subset \propL$, $t \in \propL$. If $S \sementails t$ then $\exists$ finite $S' \subset S$ such that $S' \sementails t$. \end{corollary} \begin{proof} Trivial for $\synentails$ as \glspl{pproof} are finite. \end{proof} Special case: \begin{corollary} \label{alt_comp_thm} Let $S \subset \propL$. If every finite subset of $S$ has a \gls{pmodel}, then $S$ has a \gls{pmodel}. \end{corollary} \begin{proof} If not, then $S \sementails \false$, so by \cref{comp_thm} there exists finite $S' \subset S$ with $S' \sementails \false$, contradiction. \end{proof} \begin{remark*} \cref{alt_comp_thm} implies \cref{comp_thm}. If $S \sementails t$ then $S \cup \{\pnot t\} \sementails t$, so by \cref{alt_comp_thm} there exists finite $S' \subset S$ such that $S' \cup \{\pnot t\} \sementails \false$. So $S' \sementails t$. \end{remark*} \begin{note*} The use of the word `compactness' is more than a fancified analogy (see \es{1}). \end{note*} \begin{corollary}[Decidability Theorem] Let $S \subset \propL$, $S$ finite and $t \in \propL$. Then there's an algorithm that can decide in finite time whether $S \synentails t$ or not. \end{corollary} \begin{proof} Easy to decide if $S \sementails t$. Just write out a truth table. \end{proof}