%! TEX root = LST.tex % vim: tw=50 % 12/03/2024 09AM \subsubsection*{Projective Hierarchy} \begin{definition*}[Analytic st] An \emph{analytic set} (in a Polish space) is the continuous image of $\mathcal{N}$. \end{definition*} \begin{example*} Every Polish space (by \cref{polish_cts_image}). Every closed subset of Polish space. \end{example*} \begin{proposition} \label{analytic_tfae} Let $A \subset X$, $X$ Polish. Then the following are equivalent: \begin{enumerate}[(i)] \item $A$ is analytic. \item $A$ is a continuous image of a Borel set. \item $A$ is the projection onto $X$ of some Borel subset of $Y \times X$, $Y$ Polish. \item $A$ is the projection onto $X$ of some closed subset of $Y \times X$, $Y$ Polish. \item $A$ is the projection onto $X$ of some Borel subset of $\mathcal{N} \times X$. \item $A$ is the projection onto $X$ of some closed subset of $\mathcal{N} \times X$. \end{enumerate} \end{proposition} \begin{note*} $\mathcal{N} = \NN^{\NN}$, $\mathcal{N} \times \mathcal{N} = \NN^{\NN \sqcup \NN}$ homeomorphic to $\mathcal{N}$, and $\mathcal{N}^{\NN} = \NN^{\NN \times \NN}$ is also homeomorphic to $\NN$. \end{note*} \begin{proof} Enough to show (ii) $\Rightarrow$ (I) $\Rightarrow$ (vi). \begin{enumerate}[(i) $\Rightarrow$ (vi)] \item[(i) $\Rightarrow$ (vi)] $A = f(\mathcal{N})$, $f$ closed. $A$ is the projection onto $X$ of \[ \{(\bf{n}, f(\bf{n})) \st \bf{n} \in \mathcal{N}\} \] which is closed. \item[(ii) $\Rightarrow$ (i)] Need: Borel $\implies$ analytic. Enough: every Borel set satisfies (vi). $\Pi_1^0$ is a subset of the sets satisfying (vi). Need that the set of sets satisfying (vi) is closed under countable union and intersection. Assume $A_n$ is the projection of $F_n \subset \mathcal{N} \times X$, $F_n$ closed. So $x \in A_n$ $\iff$ $\exists \bf{n} \in \mathcal{N}, (\bf{n}, x) \in F_n$. Then \[ x \in \bigcup_n A_n \iff \exists n \in \NN ~\exists \bf{n} \in \mathcal{N}~~ (\bf{n}, x) \in F_n .\] Let \[ F = \{(n, \bf{n}, x) \in \ub{\NN \times \mathcal{N}}_{\mathcal{N}} \times X \st (\bf{n}, x \in F_n)\} \] which is closed and projects onto $\bigcup_n A_n$. For intersection: $x \in \bigcap_n A_n$ if and only if $\forall n ~\exists \bf{n}, (\bf{n}, x) \in F_n$. Then \[ G = \{(\bf{n}_1, \bf{n}_2, \bf{n}_3, \ldots, x) \in \mathcal{N}^{\NN} \times X \st (n_i, x) \in F_i ~\forall i\} \] is closed and projects onto $\bigcap_n A_n$. \qedhere \end{enumerate} \end{proof} \begin{definition*}[$\Sigma_n^1$, $\Pi_n^1$] Let $\Sigma_1^1$ be the set of analytic sets. Let $\Pi_1^1$ be the set of coanalytic sets, i.e. complements of analytic sets. For $1 \le n \le \omega$, let $\Sigma_{n + 1}^1$ be the continuous image of $\Pi_n^1$ sets. Let $\Pi_{n + 1}^1$ be the complements of $\Sigma_{n + 1}^1$ sets. \end{definition*} \vspace{-1em} As before: \begin{center} \includegraphics[width=0.6\linewidth]{images/db7990cfe8ab4592.png} \end{center} projective hierarchy \[ P = \bigcup_{1 \le n < \omega} \Sigma_n^1 = \bigcup_{1 \le n < \omega} \Pi_n^1 .\] \begin{theorem} There exists a universal analytic set $A \subset \mathcal{N} \times \mathcal{N}$. \end{theorem} \begin{proof} Let $U$ be a universal open set in $\mathcal{N} \times (\mathcal{N} \times \mathcal{N})$. So if $V \subset \mathcal{N} \times \mathcal{N}$ is open then there exists $\bf{p} \in \mathcal{N}$ such that \[ V = \{(\bf{m}, \bf{n}) \in \mathcal{N} \times \mathcal{N} \st (\bf{p}, \bf{m}, \bf{n}) \in U\} .\] Suppose $B \subset \mathcal{N}$ is analytic. So there exists closed $F \subset \mathcal{N} \times \mathcal{N}$ such that \[ B = \{\bf{n} \in \mathcal{N} \st \exists \bf{m} \in \mathcal{N}, (\bf{m}, \bf{n}) \in F\} .\] So $\exists \bf{p} \in \NN$ such that \[ B = \{\bf{n} \in \mathcal{N} \st \exists \bf{m} \in \mathcal{N}, (\bf{p}, \bf{m}, \bf{n}) \notin U\} .\] Let \[ A = \{(\bf{r}, \bf{s}) \in \mathcal{N} \times \mathcal{N} \st \exists \bf{m} \in \mathcal{N}, (\bf{r}, \bf{m}, \bf{s}) \notin U\} \] This is a projection of a closed set, so analytic. \[ B = \{\bf{n} \in \mathcal{N} \st (\bf{p}, \bf{n}) \in A\} . \qedhere \] \end{proof} \begin{corollary} There exists an analytic, not coanalytic set in $\mathcal{N}$. \end{corollary} \begin{proof} Let $A \subset \mathcal{N} \times \mathcal{N}$ be a universal analytic set, and $B = \{\bf{n} \in \mathcal{N} \st (\bf{n}, \bf{n}) \in A\}$ analytic. If $B$ is coanalytic, then \[ \exists \bf{m} \in \mathcal{N} \qquad B = \{\bf{n} \in \mathcal{N} \st (\bf{m}, \bf{n}) \notin A\} .\] Is $\bf{m} \in B$? No, contradiction. \end{proof} \begin{remark*} So $B \in \Sigma_1^1 \setminus \Pi_1^1$, so $B$ is not Borel (``$P \neq NP$''). \end{remark*} \vspace{-1em} \textbf{Aim:} $\Sigma_1^1 \cap \Pi_1^1 = \mathcal{B}$. ``$\supset$'' is \cref{analytic_tfae}. \begin{theorem}[Lusin's Separation Theorem] If $A_1, A_2$ are disjoint analytic sets, then there exists a orel set $B$, $A_1 \subset B$, $A_2 \subset X \setminus B$. \end{theorem} \begin{proof} First: if $Y = \bigcup_n Y_n$, $Z = \bigcup_n Z_n$ and $\forall m, n$ $Y_m, Z_n$ can be separated by Borel sets, then so can $Y$, $Z$. So for all $m, n$, find $Y_m \subset B_{m, n} \subset X \setminus Z_n$, $B_{m, n}$ Borel. Then \[ B = \bigcup_m \bigcap_n B_{m, n} \] is Borel, and $Y \subset B \subset X \setminus Z$. Now suppose $f, g$ are continuous and $f(\mathcal{N})$, $g(\mathcal{N})$ are disjoint, but cannot be separated. Recall \[ U_{m_1, m_2, \ldots, m_k} = \{\bf{n} \in \mathcal{N} \st n_i = m_i, 1 \le i \le k\} \] is our notation for the basic open sets in $\mathcal{N}$. $f(\mathcal{N}) = \bigcup_n f(U_n)$, $g(\mathcal{N}) = \bigcup_n g(U_n)$. There exists $m_1, n_1$ such that $f(U_{m_1})$, $g(U_{n_1})$ cannot be separated. Inductively, we get $\bf{m}, \bf{n} \in \mathcal{N}$ such that for all $\bf{m}, \bf{n} \in \mathcal{N}$, $f(U_{m_1, \ldots, m_k})$, $g(U_{n_1, \ldots, n_k})$ cannot be separated. But $\mathcal{N}$ is Hausdorff (and in fact we can separate points using the basic open sets $U$), which gives a contradiction. \end{proof} \begin{corollary} $\Sigma_1^1 \cap \Pi_1^1 = \mathcal{B}$. \end{corollary} \begin{example*} Let $\Sigma = \bigcup_{k \in \NN_0} \NN^k$. $s, t \in \Sigma$, we write $s \prec t$ if $s = (n_1, \ldots, n_j)$, $t = (n_1, \ldots, n_i)$, $0 \le j \le i$. $s \in \Sigma$, $\bf{n} \in \mathcal{N}$, $s \prec \bf{n}$ if $s = (n_1, \ldots, n_j)$, $j \in \NN_0$. $\PP \Sigma = \{0, 1\}^{\Sigma}$ Polish space. $T \subset \Sigma$ is a \emph{tree} if $s \prec t$, $t \in T \implies s \in T$. $T$ is \emph{well-founded} if $\not\exists \bf{n} \in \mathcal{N}$ such that $\forall i$, $(n_1, \ldots, n_i) \in T$. \[ WFT = \{T \subset \Sigma \st \text{$T$ is well-founded}\} \] \end{example*} \vspace{-1em} A subset $A$ of a Polish space is \emph{perfect} if $A$ is closed and contains no isolated points. ($x \in A$ is \emph{isolated} if $\exists r > 0$, $B_r(x) \cap A = \{x\}$). \begin{lemma} $A \neq \emptyset$ perfect set has cardinality $2^{\aleph_0}$. \end{lemma} \begin{proof} \begin{center} \includegraphics[width=0.6\linewidth]{images/1df767c5d9c14235.png} \end{center} Closed balls, disjoint, diameter $<1$, centres in $A$. $\{0,1\}^{\NN} \hookrightarrow A$, so $\card A \ge 2^{\aleph_0}$. $\card A \le \card \mathcal{N} = \aleph_0^{\aleph_0} = 2^{\aleph_0}$. \end{proof} \begin{theorem} An analytic set is either countable or contains a non-empty perfect set. So \gls{CH} holds for analytic sets. \end{theorem} \vspace{-1em} $f(\mathcal{N})$. $T$ tree \[ [T] = \{\bf{n} \in \mathcal{N} \st (n_1, \ldots, n_i) \in T ~\forall i\} .\] $[\Sigma] = \mathcal{N}$, $s \in \Sigma$, \[ T(s) = \{t \in \Sigma \st t \prec s \text{ or } s \prec t\} .\] $T^{(0)} = \Sigma$, \[ T^{(\alpha + 1)} = (T^{(\alpha)})' = \{s \in T^{(\alpha)} \st f([T^{(\alpha)}(s)]) \text{ is uncountable}\} .\] \[ T^{(\lambda)} = \bigcap_{\alpha < \lambda} T^{(\alpha)} .\] $\exists \alpha < \omegaone$, $T^{(\alpha)} = T^{(\alpha + 1)}$, ($\Sigma$ countable). Either $T^{(\alpha)} = \emptyset$ implies $f(\mathcal{N})$ countable or $T^{(\alpha)} \neq \emptyset$. Find a copy of $\{0, 1\}^\NN \subset [T^{(\alpha)}]$. The image of $\{0, 1\}^\NN$ is perfect.