%! TEX root = LST.tex % vim: tw=50 % 09/03/2024 09AM In \gls{ZFC}: \begin{flashcard}[sum-product-defn] \begin{definition*}[Cardinal sum and product] \cloze{Given a set $I$ and \glspl{card} $m_i$, $i \in I$, we define \[ \sum_{i \in I} m_i = \card \left( \bigsqcup_{i \in I} M_i \right) \] (here $M_i$ is a set of \gls{cardty} $m_i$, $i \in I$, $\bigsqcup_{i \in I} M_i = \bigcup_{i \in I} M_i \times \{i\}$). We also define \[ \prod_{i \in I} m_i = \card \left( \prod_{i \in I} M_i \right) \] ($\prod_{i \in I} M_i = \{f : I \to \bigcup_{i \in I} M_i \st f(i) \in M_i ~\forall i \in I\}$).} \end{definition*} \end{flashcard} \vspace{-1em} Need \gls{aoc} as we need to be able to choose $M_i$ for each $i \in I$ and to prove these operations are well-defined, given $M_i \equivcard M_i'$, $i \in I$, we need to choose for each $i \in I$, a bijection $f_i : M_i \to M_i'$, and show $\bigcup_i M_i \equivcard \bigsqcup_i M_i'$, $\prod_i M_u \equivcard \prod_i M_i'$. \begin{example*} If $\card I \cle \caleph_\alpha$, $m_i \cle \caleph_\aleph$ for all $I \in I$, then $\sum_{i \in I} m_i \cle \caleph_\alpha$. \end{example*} \begin{note*} If $n = \card I$ and $m_i = m ~\forall i \in I$, $\prod_{i \in I} m_i = m^n$. \end{note*} \vspace{-1em} If $\alpha \wle \beta$, then \[ 2^{\caleph_\beta} \cle \caleph_\alpha^{\caleph_\beta} = 2^{\caleph_\alpha \caleph_\beta} \cle 2^{\caleph_\beta \caleph_\beta} = 2^{\caleph_\beta} .\] So we've reduced to studying $2^{\caleph_\beta}$. Hard. $\caleph_\alpha \clt 2^{\caleph_\alpha}$, so $\caleph_0 \clt 2^{\caleph_0} = \card (\RR)$. \glsnoundefn{CH}{Continuum Hypothesis}{N/A} Continuum Hypothesis (CH): $2^{\caleph_0} = \caleph_1$. Paul Cohen proved: if \gls{ZFC} is \gls{cons}, then so are \gls{ZFC} + \gls{CH} and \gls{ZFC} + $\neg$ \gls{CH}. \textit{\textbf{THIS IS THE END OF ALL THE EXAMINABLE MATERIAL FOR THIS COURSE (THE NEXT SECTION IS COMPLETELY NON EXAMINABLE).}} \newpage \section{Classical Descriptive Set Theory (Non-examinable)} Study of ``definable sets'' in Polish spaces. Borel hierarchy, projective hierarchy. \textbf{Aim:} \gls{CH} holds for analytic sets. We show that the analogous statement to $P \neq NP$ holds in this setting. \begin{definition*}[Polish space] A topological space $X$ is a \emph{Polish space} if it is separable and complete metrizable. \end{definition*} \begin{example*} Baire space $\mathcal{N} = \NN^{\NN}$. Basic open sets are: \[ U_{m_1, \ldots, m_k} = \{\bf{n} = (n_i)_{i = 1}^\infty \in \mathcal{N} \st n_i = m_i, 1 \le i \le k\} .\] $d(\bf{m}, \bf{n}) = \sum_{k, m_k \neq n_k} 2^{-k}$. $\{0, 1\}^{\NN} \subset \mathcal{N}$. \end{example*} \begin{lemma} \label{polish_cts_image} Any Polish space is a continuous image of $\mathcal{N}$. \end{lemma} \begin{proof} Let $X$ be a Polish space with complete metric $d$. Let $X = \bigcup_{n \in \NN} U_n$, $U_n$ non-empty and open, $\diam(U_n) < 1$ (since $X$ separable). Let $U_n = \bigcup_{p \in \NN} U_{n, p}$, $U_{n, p}$ non-empty and open, $\diam(U_{n, p}) < \half$. Continue infinitely, by letting \[ U_{n_1, \ldots, n_k} = \bigcup_{n_{k + 1} \in \NN} U_{n_1, \ldots, n_{k + 1}} \] with $U_{n_1, \ldots, n_{k + 1}}$ always non-empty and open, and $\diam < \frac{1}{k + 1}$. Now pick $x_{n_1, \ldots, n_k} \in U_{n_1, \ldots, n_k}$. Define \begin{align*} \phi : \mathcal{N} &\to X \\ \varphi(\bf{n}) &= \lim_{k \to \infty} x_{n_1, \ldots, n_k} \qedhere \end{align*} \end{proof} \begin{lemma} $\mathcal{N}$ is homeomorphic to the set of irrationals on $[0, 1]$. \end{lemma} \begin{proof} Continued fractions (for a definition and some properties, see \courseref[Number Theory]{NT}). \end{proof} \begin{definition*}[Borel hierarchy] Let $X$ be a set. A \emph{$\sigma$-field} on $X$ is a subset $\mathcal{F} \subset \PP X$ such that \begin{enumerate}[(i)] \item $\emptyset \in \mathcal{F}$ \item $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_{n \in \NN} A_n \in \mathcal{F}$ \item $A \in \mathcal{F} \implies X \setminus A \in \mathcal{F}$ \end{enumerate} If $X$ is a Polish space, then the \emph{Borel $\sigma$-field} $\mathcal{B}$ on $X$ is the smallest $\sigma$-field on $X$ that contains the open sets. \end{definition*} \begin{remark*} This is a field under the operations of symmetric difference and intersection, with identity $\emptyset$ (alternatively, it is also a field under the operations of symmetric difference and union, with identity $X$). \end{remark*} \begin{definition*}[$\Sigma_1^0$, $\Pi_1^0$] We let $\Sigma_1^0$ be the set of open subsets of $X$, and $\pi_1^0$ be the set of closed subsets of $X$. We define $\Sigma_\alpha^0$, $\Pi_\alpha^1$ for $1 \le \alpha < \omega_1$ b recursion: \begin{itemize} \item $\Sigma_{\alpha + 1}^0$ is the countable unions of members of $\Pi_\alpha^0$ (for example, $\Sigma_2^0$ are the $F_\sigma$-sets). \item $\Pi_{\alpha + 1}^0$ are the complemenets of membets of $\Sigma_{\alpha + 1}^0$ (for example, $\Pi_2^0$ are the $G_\delta$-sets). \end{itemize} For $\alpha \neq 0$ \glsref[limord]{limit}: \begin{itemize} \item $\Sigma_\alpha^0$ consists of sets of the form $\bigcup_{n \in \NN} A_n$, where $\forall n < \omega$, $\exists \beta < \alpha$ with $A_n \in \Pi_\beta^0$. \item $\Pi_\alpha^0$ is the complements of members of $\Sigma_\alpha^0$. \end{itemize} \end{definition*} \begin{definition*}[$\Delta_\alpha^0$] We define $\Delta_\alpha^0 = \Sigma_\alpha^0 \cap \Pi_\alpha^0$. \end{definition*} \vspace{-1em} We have: \begin{center} \includegraphics[width=0.6\linewidth]{images/b80675cb506342c6.png} \end{center} Prove the $\subset$ property by induction, starting with $\Sigma_1^0 \subset \Sigma_2^0$, using the fact that we are a metric space (not just a topological space). \begin{proposition} $\bigcup_{\alpha \wlt \omegaone} \Sigma_\alpha^0 = \bigcup_{\alpha \wlt \omegaone} \Pi_\alpha^0 = \mathcal{B}$ (the set of Borel sets). \end{proposition} \begin{proof} First notice: \[ \bigcup_{\alpha \wlt \omegaone} \Sigma_\alpha^0 = \bigcup_{\alpha \wlt \omegaone} \Pi_\alpha^0 \subset \mathcal{B} .\] Need: $\mathcal{F} = \bigcup_{\alpha \wlt \omegaone} \Sigma_\alpha^0$ is a $\sigma$-field. For example, if $A_n \in \mathcal{F}$, $n \in \NN$, then $A_n \in \Pi_{\alpha_n}^0$ for some $\alpha_n \wlt \omegaone$. Let $\alpha = \sup(\alpha_n + 1)$. Then $\bigcup_n A_n \in \Sigma_\alpha^0$ etc. \end{proof} \begin{definition*}[Universal subset] A subset $A \subset \mathcal{N} \times \mathcal{N}$ is a \emph{universal $\Sigma_\alpha^0$-set} if: \begin{enumerate}[(i)] \item $A$ is $\Sigma_\alpha^0$ \item If $B \subset \mathcal{N}$ is $\Sigma_\alpha^0$ then $\exists \bf{m} \in \mathcal{N}$, $B = \{\bf{n} \in \mathcal{N} \st (\bf{m}, \bf{n}) \in A\}$. \end{enumerate} \end{definition*} \begin{theorem} $\forall \alpha$, $1 \wle \alpha \wlt \omegaone$, there exists a universal $\Sigma_\alpha^0$ set. \end{theorem} \begin{proof} \phantom{} \begin{enumerate}[$\alpha \wgt 1$:] \item[$\alpha = 1$:] Can enumerate the basic open set of $\mathcal{N}$ as $U_1, U_2, U_3, \ldots$. If $B \subset \mathcal{N}$ is open, then $B = \bigcup_{i \in \NN} U_{m_i}$ for some $\bf{m} = (m_i) \in \mathcal{N}$. So $\bf{n} \in B \iff \exists i ~\bf{n} \in U_{m_i}$. So define \[ A = \{(\bf{m}, \bf{n}) \in \mathcal{N} \times \mathcal{N} \st \exists i ~\bf{n} \in U_{m_i}\} .\] This is open and universal by above. \item[$\alpha \wgt 1$:] use induction. \qedhere \end{enumerate} \end{proof} \begin{corollary} For every $\alpha$, $1 \wle \alpha \wlt \omegaone$, there exiss a set $A \in \Sigma_\alpha^0 \setminus \Pi_\alpha^0$. \end{corollary} \begin{note*} It follows that \begin{center} \includegraphics[width=0.6\linewidth]{images/4b9127c86c3f4359.png} \end{center} \end{note*} \begin{proof} Let $A \subset \mathcal{N} \times \mathcal{N}$ be a universal $\Sigma_\alpha^0$ set. \[ B = \{\bf{n} \in \mathcal{N} \st (\bf{n}, \bf{n}) \in A\} .\] $B$ is $\Sigma_\alpha^0$ ($\bf{n} \mapsto (\bf{n}, \bf{n})$ is continuous). If $B$ is $\Pi_\alpha^0$ then $\exists \bf{m}$ with $B = \{\bf{n} \st (\bf{n}, \bf{n}) \notin A\}$. $\bf{m} \in B$? contradiction. \end{proof}